Cargando…
Physcomitrium patens (Hedw.) Mitt. growing in the dark defaults to an auxin- and cytokinin-independent developmental programme
Auxin and cytokinin partially restore Physcomitrium (formerly Physcomitrella ) patens gametophores that have developed in the dark to a form more typical of those grown in light. Auxin synthesis and/or transport in gametophores decrease with time spent in the dark. Auxin synthesis resumes in the api...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Caltech Library
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474480/ https://www.ncbi.nlm.nih.gov/pubmed/37662053 http://dx.doi.org/10.17912/micropub.biology.000915 |
Sumario: | Auxin and cytokinin partially restore Physcomitrium (formerly Physcomitrella ) patens gametophores that have developed in the dark to a form more typical of those grown in light. Auxin synthesis and/or transport in gametophores decrease with time spent in the dark. Auxin synthesis resumes in the apices of dark-grown gametophores upon their return to the light. Red light and to a lesser extent blue light are sufficient for this. The mas and GH3 promoters are both auxin-inducible but respond differentially to spatial cues. |
---|