Cargando…
Water use efficiency across scales: from genes to landscapes
Water scarcity is already set to be one of the main issues of the 21st century, because of competing needs between civil, industrial, and agricultural use. Agriculture is currently the largest user of water, but its share is bound to decrease as societies develop and clearly it needs to become more...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474597/ https://www.ncbi.nlm.nih.gov/pubmed/36779607 http://dx.doi.org/10.1093/jxb/erad052 |
_version_ | 1785100531716325376 |
---|---|
author | Vadez, Vincent Pilloni, Raphael Grondin, Alexandre Hajjarpoor, Amir Belhouchette, Hatem Brouziyne, Youssef Chehbouni, Ghani Kharrou, Mohamed Hakim Zitouna-Chebbi, Rim Mekki, Insaf Molénat, Jérôme Jacob, Frédéric Bossuet, Jérôme |
author_facet | Vadez, Vincent Pilloni, Raphael Grondin, Alexandre Hajjarpoor, Amir Belhouchette, Hatem Brouziyne, Youssef Chehbouni, Ghani Kharrou, Mohamed Hakim Zitouna-Chebbi, Rim Mekki, Insaf Molénat, Jérôme Jacob, Frédéric Bossuet, Jérôme |
author_sort | Vadez, Vincent |
collection | PubMed |
description | Water scarcity is already set to be one of the main issues of the 21st century, because of competing needs between civil, industrial, and agricultural use. Agriculture is currently the largest user of water, but its share is bound to decrease as societies develop and clearly it needs to become more water efficient. Improving water use efficiency (WUE) at the plant level is important, but translating this at the farm/landscape level presents considerable challenges. As we move up from the scale of cells, organs, and plants to more integrated scales such as plots, fields, farm systems, and landscapes, other factors such as trade-offs need to be considered to try to improve WUE. These include choices of crop variety/species, farm management practices, landscape design, infrastructure development, and ecosystem functions, where human decisions matter. This review is a cross-disciplinary attempt to analyse approaches to addressing WUE at these different scales, including definitions of the metrics of analysis and consideration of trade-offs. The equations we present in this perspectives paper use similar metrics across scales to make them easier to connect and are developed to highlight which levers, at different scales, can improve WUE. We also refer to models operating at these different scales to assess WUE. While our entry point is plants and crops, we scale up the analysis of WUE to farm systems and landscapes. |
format | Online Article Text |
id | pubmed-10474597 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-104745972023-09-03 Water use efficiency across scales: from genes to landscapes Vadez, Vincent Pilloni, Raphael Grondin, Alexandre Hajjarpoor, Amir Belhouchette, Hatem Brouziyne, Youssef Chehbouni, Ghani Kharrou, Mohamed Hakim Zitouna-Chebbi, Rim Mekki, Insaf Molénat, Jérôme Jacob, Frédéric Bossuet, Jérôme J Exp Bot Review Papers Water scarcity is already set to be one of the main issues of the 21st century, because of competing needs between civil, industrial, and agricultural use. Agriculture is currently the largest user of water, but its share is bound to decrease as societies develop and clearly it needs to become more water efficient. Improving water use efficiency (WUE) at the plant level is important, but translating this at the farm/landscape level presents considerable challenges. As we move up from the scale of cells, organs, and plants to more integrated scales such as plots, fields, farm systems, and landscapes, other factors such as trade-offs need to be considered to try to improve WUE. These include choices of crop variety/species, farm management practices, landscape design, infrastructure development, and ecosystem functions, where human decisions matter. This review is a cross-disciplinary attempt to analyse approaches to addressing WUE at these different scales, including definitions of the metrics of analysis and consideration of trade-offs. The equations we present in this perspectives paper use similar metrics across scales to make them easier to connect and are developed to highlight which levers, at different scales, can improve WUE. We also refer to models operating at these different scales to assess WUE. While our entry point is plants and crops, we scale up the analysis of WUE to farm systems and landscapes. Oxford University Press 2023-02-13 /pmc/articles/PMC10474597/ /pubmed/36779607 http://dx.doi.org/10.1093/jxb/erad052 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Papers Vadez, Vincent Pilloni, Raphael Grondin, Alexandre Hajjarpoor, Amir Belhouchette, Hatem Brouziyne, Youssef Chehbouni, Ghani Kharrou, Mohamed Hakim Zitouna-Chebbi, Rim Mekki, Insaf Molénat, Jérôme Jacob, Frédéric Bossuet, Jérôme Water use efficiency across scales: from genes to landscapes |
title | Water use efficiency across scales: from genes to landscapes |
title_full | Water use efficiency across scales: from genes to landscapes |
title_fullStr | Water use efficiency across scales: from genes to landscapes |
title_full_unstemmed | Water use efficiency across scales: from genes to landscapes |
title_short | Water use efficiency across scales: from genes to landscapes |
title_sort | water use efficiency across scales: from genes to landscapes |
topic | Review Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474597/ https://www.ncbi.nlm.nih.gov/pubmed/36779607 http://dx.doi.org/10.1093/jxb/erad052 |
work_keys_str_mv | AT vadezvincent wateruseefficiencyacrossscalesfromgenestolandscapes AT pilloniraphael wateruseefficiencyacrossscalesfromgenestolandscapes AT grondinalexandre wateruseefficiencyacrossscalesfromgenestolandscapes AT hajjarpooramir wateruseefficiencyacrossscalesfromgenestolandscapes AT belhouchettehatem wateruseefficiencyacrossscalesfromgenestolandscapes AT brouziyneyoussef wateruseefficiencyacrossscalesfromgenestolandscapes AT chehbounighani wateruseefficiencyacrossscalesfromgenestolandscapes AT kharroumohamedhakim wateruseefficiencyacrossscalesfromgenestolandscapes AT zitounachebbirim wateruseefficiencyacrossscalesfromgenestolandscapes AT mekkiinsaf wateruseefficiencyacrossscalesfromgenestolandscapes AT molenatjerome wateruseefficiencyacrossscalesfromgenestolandscapes AT jacobfrederic wateruseefficiencyacrossscalesfromgenestolandscapes AT bossuetjerome wateruseefficiencyacrossscalesfromgenestolandscapes |