Cargando…
Improved genomic prediction using machine learning with Variational Bayesian sparsity
BACKGROUND: Genomic prediction has become a powerful modelling tool for assessing line performance in plant and livestock breeding programmes. Among the genomic prediction modelling approaches, linear based models have proven to provide accurate predictions even when the number of genetic markers ex...
Autores principales: | Yan, Qingsen, Fruzangohar, Mario, Taylor, Julian, Gong, Dong, Walter, James, Norman, Adam, Shi, Javen Qinfeng, Coram, Tristan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474716/ https://www.ncbi.nlm.nih.gov/pubmed/37660084 http://dx.doi.org/10.1186/s13007-023-01073-3 |
Ejemplares similares
-
Discovery of
Graphene Growth Alloy Catalysts Using
High-Throughput Machine Learning
por: Li, Xinyu, et al.
Publicado: (2023) -
Experimental Validation of Entropy-Driven Swarm Exploration under Sparsity Constraints with Sparse Bayesian Learning
por: Manss, Christoph, et al.
Publicado: (2022) -
Statistical learning with sparsity: the lasso and generalizations
por: Hastie, Trevor, et al.
Publicado: (2015) -
On the sparsity of fitness functions and implications for learning
por: Brookes, David H., et al.
Publicado: (2021) -
A nonparametric Bayesian method of translating machine learning scores to probabilities in clinical decision support
por: Connolly, Brian, et al.
Publicado: (2017)