Cargando…
Empirical evaluation of language modeling to ascertain cancer outcomes from clinical text reports
BACKGROUND: Longitudinal data on key cancer outcomes for clinical research, such as response to treatment and disease progression, are not captured in standard cancer registry reporting. Manual extraction of such outcomes from unstructured electronic health records is a slow, resource-intensive proc...
Autores principales: | Elmarakeby, Haitham A., Trukhanov, Pavel S., Arroyo, Vidal M., Riaz, Irbaz Bin, Schrag, Deborah, Van Allen, Eliezer M., Kehl, Kenneth L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474750/ https://www.ncbi.nlm.nih.gov/pubmed/37658330 http://dx.doi.org/10.1186/s12859-023-05439-1 |
Ejemplares similares
-
Artificial intelligence-aided clinical annotation of a large multi-cancer genomic dataset
por: Kehl, Kenneth L., et al.
Publicado: (2021) -
Clinical Inflection Point Detection on the Basis of EHR Data to Identify Clinical Trial–Ready Patients With Cancer
por: Kehl, Kenneth L., et al.
Publicado: (2021) -
Genomics of response to immune checkpoint therapies for cancer: implications for precision medicine
por: Conway, Jake R., et al.
Publicado: (2018) -
Improving ascertainment of suicidal ideation and suicide attempt with natural language processing
por: Bejan, Cosmin A., et al.
Publicado: (2022) -
Patterns of care for older patients with stage IV non‐small cell lung cancer in the immunotherapy era
por: Kehl, Kenneth L., et al.
Publicado: (2020)