Cargando…
Development of machine learning models for the detection of surgical site infections following total hip and knee arthroplasty: a multicenter cohort study
BACKGROUND: Population based surveillance of surgical site infections (SSIs) requires precise case-finding strategies. We sought to develop and validate machine learning models to automate the process of complex (deep incisional/organ space) SSIs case detection. METHODS: This retrospective cohort st...
Autores principales: | Wu, Guosong, Cheligeer, Cheligeer, Southern, Danielle A., Martin, Elliot A., Xu, Yuan, Leal, Jenine, Ellison, Jennifer, Bush, Kathryn, Williamson, Tyler, Quan, Hude, Eastwood, Cathy A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474760/ https://www.ncbi.nlm.nih.gov/pubmed/37658409 http://dx.doi.org/10.1186/s13756-023-01294-0 |
Ejemplares similares
-
Performance of machine learning algorithms for surgical site infection case detection and prediction: A systematic review and meta-analysis
por: Wu, Guosong, et al.
Publicado: (2022) -
Validity of ICD-10 codes for COVID-19 patients with hospital admissions or ED visits in Canada: a retrospective cohort study
por: Wu, Guosong, et al.
Publicado: (2022) -
Under-coding of secondary conditions in coded hospital health data: impact of co-existing conditions, death status and number of codes in a record
por: Peng, Mingkai, et al.
Publicado: (2017) -
Field testing a new ICD coding system: methods and early experiences with ICD-11 Beta Version 2018
por: Eastwood, Cathy A., et al.
Publicado: (2022) -
Describing agreement in the main condition coding field using Canadian ICD-11 inpatient data
por: Wiebe, Natalie, et al.
Publicado: (2021)