Cargando…
Intestinal GPDH-1 regulates high glucose diet induced lifespan extension in aged worms
A high glucose diet (HGD) is associated with many metabolic diseases including type 2 diabetes, and cardiovascular diseases. Additionally, a HGD increases the oxidative stress resistance of young animals but shortens their lifespan. To investigate the role of HGD feeding on the aging of aged animals...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474827/ https://www.ncbi.nlm.nih.gov/pubmed/37663291 http://dx.doi.org/10.7717/peerj.15845 |
Sumario: | A high glucose diet (HGD) is associated with many metabolic diseases including type 2 diabetes, and cardiovascular diseases. Additionally, a HGD increases the oxidative stress resistance of young animals but shortens their lifespan. To investigate the role of HGD feeding on the aging of aged animals, we tested for oxidative stress resistance and changes in lifespan using C. elegans. We showed that a HGD extends the lifespan of aged worms that are dependent on oxidative stress resistance. Furthermore, we measured the lifespan of oxidative stress responding genes of HGD-fed worms. We found that gpdh-1 and col-92 are highly expressed in HGD and paraquat (PQ) treated worms. Further experiments indicated that intestinal gpdh-1 is essential for the HGD induced lifespan extension of aged worms. Our studies provide new insights into understanding the correlation between glucose metabolism, oxidative stress resistance, and aging. |
---|