Cargando…
Estimating a brain network predictive of stress and genotype with supervised autoencoders
Targeted brain stimulation has the potential to treat mental illnesses. We develop an approach to help design protocols by identifying relevant multi-region electrical dynamics. Our approach models these dynamics as a superposition of latent networks, where the latent variables predict a relevant ou...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474874/ https://www.ncbi.nlm.nih.gov/pubmed/37662555 http://dx.doi.org/10.1093/jrsssc/qlad035 |
Sumario: | Targeted brain stimulation has the potential to treat mental illnesses. We develop an approach to help design protocols by identifying relevant multi-region electrical dynamics. Our approach models these dynamics as a superposition of latent networks, where the latent variables predict a relevant outcome. We use supervised autoencoders (SAEs) to improve predictive performance in this context, describe the conditions where SAEs improve predictions, and provide modelling constraints to ensure biological relevance. We experimentally validate our approach by finding a network associated with stress that aligns with a previous stimulation protocol and characterizing a genotype associated with bipolar disorder. |
---|