Cargando…

Estimating a brain network predictive of stress and genotype with supervised autoencoders

Targeted brain stimulation has the potential to treat mental illnesses. We develop an approach to help design protocols by identifying relevant multi-region electrical dynamics. Our approach models these dynamics as a superposition of latent networks, where the latent variables predict a relevant ou...

Descripción completa

Detalles Bibliográficos
Autores principales: Talbot, Austin, Dunson, David, Dzirasa, Kafui, Carlson, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10474874/
https://www.ncbi.nlm.nih.gov/pubmed/37662555
http://dx.doi.org/10.1093/jrsssc/qlad035
Descripción
Sumario:Targeted brain stimulation has the potential to treat mental illnesses. We develop an approach to help design protocols by identifying relevant multi-region electrical dynamics. Our approach models these dynamics as a superposition of latent networks, where the latent variables predict a relevant outcome. We use supervised autoencoders (SAEs) to improve predictive performance in this context, describe the conditions where SAEs improve predictions, and provide modelling constraints to ensure biological relevance. We experimentally validate our approach by finding a network associated with stress that aligns with a previous stimulation protocol and characterizing a genotype associated with bipolar disorder.