Cargando…
Interpreting biologically informed neural networks for enhanced proteomic biomarker discovery and pathway analysis
The incorporation of machine learning methods into proteomics workflows improves the identification of disease-relevant biomarkers and biological pathways. However, machine learning models, such as deep neural networks, typically suffer from lack of interpretability. Here, we present a deep learning...
Autores principales: | Hartman, Erik, Scott, Aaron M., Karlsson, Christofer, Mohanty, Tirthankar, Vaara, Suvi T., Linder, Adam, Malmström, Lars, Malmström, Johan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10475049/ https://www.ncbi.nlm.nih.gov/pubmed/37660105 http://dx.doi.org/10.1038/s41467-023-41146-4 |
Ejemplares similares
-
Generalized precursor prediction boosts identification rates and accuracy in mass spectrometry based proteomics
por: Scott, Aaron M., et al.
Publicado: (2023) -
Proteome Profiling of Recombinant DNase Therapy in Reducing NETs and Aiding Recovery in COVID-19 Patients
por: Fisher, Jane, et al.
Publicado: (2021) -
A pharmacoproteomic landscape of organotypic intervention responses in Gram-negative sepsis
por: Mohanty, Tirthankar, et al.
Publicado: (2023) -
Proteome-wide selected reaction monitoring assays for the human pathogen Streptococcus pyogenes
por: Karlsson, Christofer, et al.
Publicado: (2012) -
Cerebrospinal fluid proteome maps detect pathogen-specific host response patterns in meningitis
por: Bakochi, Anahita, et al.
Publicado: (2021)