Cargando…
An efficient churn prediction model using gradient boosting machine and metaheuristic optimization
Customer churn remains a critical challenge in telecommunications, necessitating effective churn prediction (CP) methodologies. This paper introduces the Enhanced Gradient Boosting Model (EGBM), which uses a Support Vector Machine with a Radial Basis Function kernel (SVM(RBF)) as a base learner and...
Autores principales: | AlShourbaji, Ibrahim, Helian, Na, Sun, Yi, Hussien, Abdelazim G., Abualigah, Laith, Elnaim, Bushra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10475067/ https://www.ncbi.nlm.nih.gov/pubmed/37660198 http://dx.doi.org/10.1038/s41598-023-41093-6 |
Ejemplares similares
-
A Deep Batch Normalized Convolution Approach for Improving COVID-19 Detection from Chest X-ray Images
por: Al-Shourbaji, Ibrahim, et al.
Publicado: (2022) -
Multiclass feature selection with metaheuristic optimization algorithms: a review
por: Akinola, Olatunji O., et al.
Publicado: (2022) -
Evaluating the Applications of Dendritic Neuron Model with Metaheuristic Optimization Algorithms for Crude-Oil-Production Forecasting
por: Al-qaness, Mohammed A. A., et al.
Publicado: (2022) -
Fighting Churn with Data
por: Gold, Carl
Publicado: (2020) -
Clairvoyant: AdaBoost with Cost-Enabled Cost-Sensitive Classifier for Customer Churn Prediction
por: Thakkar, Hiren Kumar, et al.
Publicado: (2022)