Cargando…
Twitter trends in #Parasitology determined by text mining and topic modelling
This study investigated the emergence and use of Twitter, as of July 2023 being rebranded as X, as the main forum for social media communication in parasitology. A dataset of tweets was constructed using a keyword search of Twitter with the search terms ‘malaria’, ‘Plasmodium’, ‘Leishmania’, ‘Trypan...
Autores principales: | Ellis, John T., Reichel, Michael P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10475476/ https://www.ncbi.nlm.nih.gov/pubmed/37670843 http://dx.doi.org/10.1016/j.crpvbd.2023.100138 |
Ejemplares similares
-
Recent trends in the use of social media in parasitology and the application of alternative metrics
por: Ellis, John, et al.
Publicado: (2021) -
A text mining analysis of human flourishing on Twitter
por: Cebral-Loureda, Manuel, et al.
Publicado: (2023) -
Text Mining and Determinants of Sentiments towards the COVID-19 Vaccine Booster of Twitter Users in Malaysia
por: Ong, Song-Quan, et al.
Publicado: (2022) -
An effective short-text topic modelling with neighbourhood assistance-driven NMF in Twitter
por: Athukorala, Shalani, et al.
Publicado: (2022) -
Emotions and Topics Expressed on Twitter During the COVID-19 Pandemic in the United Kingdom: Comparative Geolocation and Text Mining Analysis
por: Alhuzali, Hassan, et al.
Publicado: (2022)