Cargando…
Contrast-enhanced magnetic resonance image segmentation based on improved U-Net and Inception-ResNet in the diagnosis of spinal metastases
OBJECTIVE: The objective of this study was to investigate the use of contrast-enhanced magnetic resonance imaging (CE-MRI) combined with radiomics and deep learning technology for the identification of spinal metastases and primary malignant spinal bone tumor. METHODS: The region growing algorithm w...
Autores principales: | Wang, Hai, Xu, Shaohua, Fang, Kai-bin, Dai, Zhang-Sheng, Wei, Guo-Zhen, Chen, Lu-Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10475503/ https://www.ncbi.nlm.nih.gov/pubmed/37670740 http://dx.doi.org/10.1016/j.jbo.2023.100498 |
Ejemplares similares
-
FemurTumorNet: Bone tumor classification in the proximal femur using DenseNet model based on radiographs
por: Pan, Canyu, et al.
Publicado: (2023) -
Bone tumor examination based on FCNN-4s and CRF fine segmentation fusion algorithm
por: Wu, Shiqiang, et al.
Publicado: (2023) -
A fusion of VGG-16 and ViT models for improving bone tumor classification in computed tomography
por: Chen, Weimin, et al.
Publicado: (2023) -
Classification of lungs infected COVID-19 images based on inception-ResNet
por: Chen, Yunfeng, et al.
Publicado: (2022) -
Maize seed appearance quality assessment based on improved Inception-ResNet
por: Song, Chang, et al.
Publicado: (2023)