Cargando…

Novel chlorinated and nitrogenated azaphilones with cytotoxic activities from the marine algal-derived fungus Chaetomium globosum 2020HZ23

Two novel chlorinated and nitrogenated azaphilones, namely N-butyl-2-aza-2-deoxychaetoviridin A (1) and N-hexyl-2-aza-2-deoxychaetoviridin A (2), along with a previously identified analogue, chaetoviridin A (3), were successfully obtained from Chaetomium globosum 2020HZ23, a marine algal-sourced end...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Zhong-Jie, Cao, Lu-Lu, Ren, Hai-Ping, Yu, Hua, Wang, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10475718/
https://www.ncbi.nlm.nih.gov/pubmed/37670992
http://dx.doi.org/10.3389/fmicb.2023.1252563
Descripción
Sumario:Two novel chlorinated and nitrogenated azaphilones, namely N-butyl-2-aza-2-deoxychaetoviridin A (1) and N-hexyl-2-aza-2-deoxychaetoviridin A (2), along with a previously identified analogue, chaetoviridin A (3), were successfully obtained from Chaetomium globosum 2020HZ23, a marine algal-sourced endophytic fungus. The planar structures as well as the absolute configurations of these new metabolites were determined utilizing a synergistic approach that involved both spectroscopic techniques (1D/2D NMR and HRESIMS) and Density Functional Theory (DFT) calculations. Each compound was subject to in vitro cytotoxicity evaluation toward the A549 cancer cell line. Both compounds 1 and 2 demonstrated significant cytotoxicity, as evidenced by their respective IC(50) values of 13.6 and 17.5 μM. Furthermore, 1 and 2 demonstrated potent cell migration inhibition, which elevated with increasing dose concentration. In contrast, compound 3 exhibited less cytotoxic activity relative to 1 and 2, suggesting that the cytotoxic potency escalates with N-substitution at the C-2 position and the introduction of a side chain. This finding could offer implications for future studies aimed at designing and refining lead compounds within this class.