Cargando…
A programmed cell death-related model based on machine learning for predicting prognosis and immunotherapy responses in patients with lung adenocarcinoma
BACKGROUND: lung adenocarcinoma (LUAD) remains one of the most common and lethal malignancies with poor prognosis. Programmed cell death (PCD) is an evolutionarily conserved cell suicide process that regulates tumorigenesis, progression, and metastasis of cancer cells. However, a comprehensive analy...
Autores principales: | Zhang, Yi, Wang, Yuzhi, Chen, Jianlin, Xia, Yu, Huang, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10475728/ https://www.ncbi.nlm.nih.gov/pubmed/37671155 http://dx.doi.org/10.3389/fimmu.2023.1183230 |
Ejemplares similares
-
Identification of novel gene signature for lung adenocarcinoma by machine learning to predict immunotherapy and prognosis
por: Shu, Jianfeng, et al.
Publicado: (2023) -
Identification of disulfidptosis-related subgroups and prognostic signatures in lung adenocarcinoma using machine learning and experimental validation
por: Wang, Yuzhi, et al.
Publicado: (2023) -
Machine learning developed a programmed cell death signature for predicting prognosis and immunotherapy benefits in lung adenocarcinoma
por: Ding, Dongxiao, et al.
Publicado: (2023) -
Identification of immune activation-related gene signature for predicting prognosis and immunotherapy efficacy in lung adenocarcinoma
por: Zeng, Weibiao, et al.
Publicado: (2023) -
A novel zinc metabolism-related gene signature to predict prognosis and immunotherapy response in lung adenocarcinoma
por: Chang, Wuguang, et al.
Publicado: (2023)