Cargando…

Non-coding RNA in tumor-infiltrating regulatory T cells formation and associated immunotherapy

Cancer immunotherapy has exhibited promising antitumor effects in various tumors. Infiltrated regulatory T cells (Tregs) in the tumor microenvironment (TME) restrict protective immune surveillance, impede effective antitumor immune responses, and contribute to the formation of an immunosuppressive m...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Yue, Xu, Xin, Wang, Huaitao, Liu, Yang, Piao, Haiyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10475737/
https://www.ncbi.nlm.nih.gov/pubmed/37671150
http://dx.doi.org/10.3389/fimmu.2023.1228331
Descripción
Sumario:Cancer immunotherapy has exhibited promising antitumor effects in various tumors. Infiltrated regulatory T cells (Tregs) in the tumor microenvironment (TME) restrict protective immune surveillance, impede effective antitumor immune responses, and contribute to the formation of an immunosuppressive microenvironment. Selective depletion or functional attenuation of tumor-infiltrating Tregs, while eliciting effective T-cell responses, represents a potential approach for anti-tumor immunity. Furthermore, it does not disrupt the Treg-dependent immune homeostasis in healthy organs and does not induce autoimmunity. Yet, the shared cell surface molecules and signaling pathways between Tregs and multiple immune cell types pose challenges in this process. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), regulate both cancer and immune cells and thus can potentially improve antitumor responses. Here, we review recent advances in research of tumor-infiltrating Tregs, with a focus on the functional roles of immune checkpoint and inhibitory Tregs receptors and the regulatory mechanisms of ncRNAs in Treg plasticity and functionality.