Cargando…
Using interpretable machine learning to extend heterogeneous antibody-virus datasets
A central challenge in biology is to use existing measurements to predict the outcomes of future experiments. For the rapidly evolving influenza virus, variants examined in one study will often have little to no overlap with other studies, making it difficult to discern patterns or unify datasets. W...
Autores principales: | Einav, Tal, Ma, Rong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10475791/ https://www.ncbi.nlm.nih.gov/pubmed/37671020 http://dx.doi.org/10.1016/j.crmeth.2023.100540 |
Ejemplares similares
-
3D Automated Segmentation of Lower Leg Muscles Using Machine Learning on a Heterogeneous Dataset
por: Rohm, Marlena, et al.
Publicado: (2021) -
Interpretable machine learning with tree-based shapley additive explanations: Application to metabolomics datasets for binary classification
por: Bifarin, Olatomiwa O.
Publicado: (2023) -
Predicting lifespan-extending chemical compounds for C. elegans with machine learning and biologically interpretable features
por: Ribeiro, Caio, et al.
Publicado: (2023) -
SCOPe: improvements to the structural classification of proteins – extended database to facilitate variant interpretation and machine learning
por: Chandonia, John-Marc, et al.
Publicado: (2021) -
Accurate virus identification with interpretable Raman signatures by machine learning
por: Ye, Jiarong, et al.
Publicado: (2022)