Cargando…
An introduction to representation learning for single-cell data analysis
Single-cell-resolved systems biology methods, including omics- and imaging-based measurement modalities, generate a wealth of high-dimensional data characterizing the heterogeneity of cell populations. Representation learning methods are routinely used to analyze these complex, high-dimensional data...
Autores principales: | Gunawan, Ihuan, Vafaee, Fatemeh, Meijering, Erik, Lock, John George |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10475795/ https://www.ncbi.nlm.nih.gov/pubmed/37671013 http://dx.doi.org/10.1016/j.crmeth.2023.100547 |
Ejemplares similares
-
A proteomics sample metadata representation for multiomics integration and big data analysis
por: Dai, Chengxin, et al.
Publicado: (2021) -
Multiple Sparse Representations Classification
por: Plenge, Esben, et al.
Publicado: (2015) -
Disconnected Body Representation: Neuroplasticity Following Spinal Cord Injury
por: Leemhuis, Erik, et al.
Publicado: (2019) -
Correction: Multiple Sparse Representations Classification
por: Plenge, Esben, et al.
Publicado: (2015) -
Cultural representations of dementia
por: Hillman, Alexandra, et al.
Publicado: (2017)