Cargando…

A deep generative framework with embedded vector arithmetic and classifier for sample generation, label transfer, and clustering of single-cell data

Multiple-source single-cell datasets have accumulated quickly and need computational methods to integrate and decompose into meaningful components. Here, we present inClust (integrated clustering), a flexible deep generative framework that enables embedding auxiliary information, latent space vector...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Lifei, Nie, Rui, Zhang, Zhang, Gu, Weiwei, Wang, Shuo, Wang, Anqi, Zhang, Jiang, Cai, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10475846/
https://www.ncbi.nlm.nih.gov/pubmed/37671019
http://dx.doi.org/10.1016/j.crmeth.2023.100558
_version_ 1785100804484497408
author Wang, Lifei
Nie, Rui
Zhang, Zhang
Gu, Weiwei
Wang, Shuo
Wang, Anqi
Zhang, Jiang
Cai, Jun
author_facet Wang, Lifei
Nie, Rui
Zhang, Zhang
Gu, Weiwei
Wang, Shuo
Wang, Anqi
Zhang, Jiang
Cai, Jun
author_sort Wang, Lifei
collection PubMed
description Multiple-source single-cell datasets have accumulated quickly and need computational methods to integrate and decompose into meaningful components. Here, we present inClust (integrated clustering), a flexible deep generative framework that enables embedding auxiliary information, latent space vector arithmetic, and clustering. All functional parts are relatively modular, independent in implementation but interrelated at runtime, resulting in an all-in general framework that could work in supervised, semi-supervised, or unsupervised mode. We show that inClust is superior to most data integration methods in benchmark datasets. Then, we demonstrate the capability of inClust in the tasks of conditional out-of-distribution generation in supervised mode, label transfer in semi-supervised mode, and spatial domain identification in unsupervised mode. In these examples, inClust could accurately express the effect of each covariate, distinguish the query-specific cell types, or segment spatial domains. The results support that inClust is an excellent general framework for multiple-task harmonization and data decomposition.
format Online
Article
Text
id pubmed-10475846
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-104758462023-09-05 A deep generative framework with embedded vector arithmetic and classifier for sample generation, label transfer, and clustering of single-cell data Wang, Lifei Nie, Rui Zhang, Zhang Gu, Weiwei Wang, Shuo Wang, Anqi Zhang, Jiang Cai, Jun Cell Rep Methods Article Multiple-source single-cell datasets have accumulated quickly and need computational methods to integrate and decompose into meaningful components. Here, we present inClust (integrated clustering), a flexible deep generative framework that enables embedding auxiliary information, latent space vector arithmetic, and clustering. All functional parts are relatively modular, independent in implementation but interrelated at runtime, resulting in an all-in general framework that could work in supervised, semi-supervised, or unsupervised mode. We show that inClust is superior to most data integration methods in benchmark datasets. Then, we demonstrate the capability of inClust in the tasks of conditional out-of-distribution generation in supervised mode, label transfer in semi-supervised mode, and spatial domain identification in unsupervised mode. In these examples, inClust could accurately express the effect of each covariate, distinguish the query-specific cell types, or segment spatial domains. The results support that inClust is an excellent general framework for multiple-task harmonization and data decomposition. Elsevier 2023-08-10 /pmc/articles/PMC10475846/ /pubmed/37671019 http://dx.doi.org/10.1016/j.crmeth.2023.100558 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Wang, Lifei
Nie, Rui
Zhang, Zhang
Gu, Weiwei
Wang, Shuo
Wang, Anqi
Zhang, Jiang
Cai, Jun
A deep generative framework with embedded vector arithmetic and classifier for sample generation, label transfer, and clustering of single-cell data
title A deep generative framework with embedded vector arithmetic and classifier for sample generation, label transfer, and clustering of single-cell data
title_full A deep generative framework with embedded vector arithmetic and classifier for sample generation, label transfer, and clustering of single-cell data
title_fullStr A deep generative framework with embedded vector arithmetic and classifier for sample generation, label transfer, and clustering of single-cell data
title_full_unstemmed A deep generative framework with embedded vector arithmetic and classifier for sample generation, label transfer, and clustering of single-cell data
title_short A deep generative framework with embedded vector arithmetic and classifier for sample generation, label transfer, and clustering of single-cell data
title_sort deep generative framework with embedded vector arithmetic and classifier for sample generation, label transfer, and clustering of single-cell data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10475846/
https://www.ncbi.nlm.nih.gov/pubmed/37671019
http://dx.doi.org/10.1016/j.crmeth.2023.100558
work_keys_str_mv AT wanglifei adeepgenerativeframeworkwithembeddedvectorarithmeticandclassifierforsamplegenerationlabeltransferandclusteringofsinglecelldata
AT nierui adeepgenerativeframeworkwithembeddedvectorarithmeticandclassifierforsamplegenerationlabeltransferandclusteringofsinglecelldata
AT zhangzhang adeepgenerativeframeworkwithembeddedvectorarithmeticandclassifierforsamplegenerationlabeltransferandclusteringofsinglecelldata
AT guweiwei adeepgenerativeframeworkwithembeddedvectorarithmeticandclassifierforsamplegenerationlabeltransferandclusteringofsinglecelldata
AT wangshuo adeepgenerativeframeworkwithembeddedvectorarithmeticandclassifierforsamplegenerationlabeltransferandclusteringofsinglecelldata
AT wanganqi adeepgenerativeframeworkwithembeddedvectorarithmeticandclassifierforsamplegenerationlabeltransferandclusteringofsinglecelldata
AT zhangjiang adeepgenerativeframeworkwithembeddedvectorarithmeticandclassifierforsamplegenerationlabeltransferandclusteringofsinglecelldata
AT caijun adeepgenerativeframeworkwithembeddedvectorarithmeticandclassifierforsamplegenerationlabeltransferandclusteringofsinglecelldata
AT wanglifei deepgenerativeframeworkwithembeddedvectorarithmeticandclassifierforsamplegenerationlabeltransferandclusteringofsinglecelldata
AT nierui deepgenerativeframeworkwithembeddedvectorarithmeticandclassifierforsamplegenerationlabeltransferandclusteringofsinglecelldata
AT zhangzhang deepgenerativeframeworkwithembeddedvectorarithmeticandclassifierforsamplegenerationlabeltransferandclusteringofsinglecelldata
AT guweiwei deepgenerativeframeworkwithembeddedvectorarithmeticandclassifierforsamplegenerationlabeltransferandclusteringofsinglecelldata
AT wangshuo deepgenerativeframeworkwithembeddedvectorarithmeticandclassifierforsamplegenerationlabeltransferandclusteringofsinglecelldata
AT wanganqi deepgenerativeframeworkwithembeddedvectorarithmeticandclassifierforsamplegenerationlabeltransferandclusteringofsinglecelldata
AT zhangjiang deepgenerativeframeworkwithembeddedvectorarithmeticandclassifierforsamplegenerationlabeltransferandclusteringofsinglecelldata
AT caijun deepgenerativeframeworkwithembeddedvectorarithmeticandclassifierforsamplegenerationlabeltransferandclusteringofsinglecelldata