Cargando…
Artificial intelligence for non-mass breast lesions detection and classification on ultrasound images: a comparative study
BACKGROUND: This retrospective study aims to validate the effectiveness of artificial intelligence (AI) to detect and classify non-mass breast lesions (NMLs) on ultrasound (US) images. METHODS: A total of 228 patients with NMLs and 596 volunteers without breast lesions on US images were enrolled in...
Autores principales: | Li, Guoqiu, Tian, Hongtian, Wu, Huaiyu, Huang, Zhibin, Yang, Keen, Li, Jian, Luo, Yuwei, Shi, Siyuan, Cui, Chen, Xu, Jinfeng, Dong, Fajin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10476370/ https://www.ncbi.nlm.nih.gov/pubmed/37667320 http://dx.doi.org/10.1186/s12911-023-02277-2 |
Ejemplares similares
-
The effect of image resolution on convolutional neural networks in breast ultrasound
por: Tang, Shuzhen, et al.
Publicado: (2023) -
S-Thyroid Computer-Aided Diagnosis Ultrasound System of Thyroid Nodules: Correlation Between Transverse and Longitudinal Planes
por: Yang, Keen, et al.
Publicado: (2022) -
A Comparative Study of Multiple Deep Learning Models Based on Multi-Input Resolution for Breast Ultrasound Images
por: Wu, Huaiyu, et al.
Publicado: (2022) -
Development and validation of a nomogram for discriminating between benign and malignant breast masses by conventional ultrasound and dual-mode elastography: a multicenter study
por: Yang, Keen, et al.
Publicado: (2023) -
Feasibility of using AI to auto-catch responsible frames in ultrasound screening for breast cancer diagnosis
por: Chen, Jing, et al.
Publicado: (2022)