Cargando…
GeNetOntology: identifying affected gene ontology terms via grouping, scoring, and modeling of gene expression data utilizing biological knowledge-based machine learning
Introduction: Identifying significant sets of genes that are up/downregulated under specific conditions is vital to understand disease development mechanisms at the molecular level. Along this line, in order to analyze transcriptomic data, several computational feature selection (i.e., gene selectio...
Autores principales: | Ersoz, Nur Sebnem, Bakir-Gungor, Burcu, Yousef, Malik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10476493/ https://www.ncbi.nlm.nih.gov/pubmed/37671046 http://dx.doi.org/10.3389/fgene.2023.1139082 |
Ejemplares similares
-
miRdisNET: Discovering microRNA biomarkers that are associated with diseases utilizing biological knowledge-based machine learning
por: Jabeer, Amhar, et al.
Publicado: (2023) -
miRModuleNet: Detecting miRNA-mRNA Regulatory Modules
por: Yousef, Malik, et al.
Publicado: (2022) -
TextNetTopics Pro, a topic model-based text classification for short text by integration of semantic and document-topic distribution information
por: Voskergian, Daniel, et al.
Publicado: (2023) -
An ontological analysis of some biological ontologies
por: Deb, Briti
Publicado: (2012) -
Capturing heart valve development with Gene Ontology
por: Ahmed, Saadullah H., et al.
Publicado: (2023)