Cargando…

Microbial signature profiles of Penaeus vannamei larvae in low-survival hatchery tanks affected by vibriosis

Vibriosis is caused by some pathogenic Vibrio and produces significant mortality in Pacific white shrimp Penaeus (Litopenaeus) vannamei larvae in commercial hatcheries. Acute hepatopancreatic necrosis disease (AHPND) is an emerging vibriosis affecting shrimp-producing countries worldwide. Zoea 2 syn...

Descripción completa

Detalles Bibliográficos
Autores principales: Reyes, Guillermo, Andrade, Betsy, Betancourt, Irma, Panchana, Fanny, Solórzano, Ramiro, Preciado, Cristhian, Sorroza, Lita, Trujillo, Luis E., Bayot, Bonny
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10476614/
https://www.ncbi.nlm.nih.gov/pubmed/37671363
http://dx.doi.org/10.7717/peerj.15795
Descripción
Sumario:Vibriosis is caused by some pathogenic Vibrio and produces significant mortality in Pacific white shrimp Penaeus (Litopenaeus) vannamei larvae in commercial hatcheries. Acute hepatopancreatic necrosis disease (AHPND) is an emerging vibriosis affecting shrimp-producing countries worldwide. Zoea 2 syndrome is another type of vibriosis that affects the early stages of P. vannamei larvae. Although the pathogenesis of AHPND and zoea 2 syndrome is well known, there is scarce information about microbial composition and biomarkers of P.vannamei larvae affected by AHPND, and there is no study of the microbiome of larvae affected by zoea 2 syndrome. In this work, we characterized the microbiome of P. vannamei larvae collected from 12 commercial hatchery tanks by high-throughput sequencing. Seven tanks were affected by AHPND, and five tanks were affected by zoea 2 syndrome. Subsequently, all samples were selected for sequencing of the V3–V4 region of the16S rRNA gene. Similarity analysis using the beta diversity index revealed significant differences in the larval bacterial communities between disease conditions, particularly when Vibrio was analyzed. Linear discriminant analysis with effect size determined specific microbial signatures for AHPND and zoea 2 syndrome. Sneathiella, Cyclobacterium, Haliea, Lewinella, among other genera, were abundant in AHPND-affected larvae. Meanwhile, Vibrio, Spongiimonas, Meridianimaribacter, Tenacibaculum, among other genera, were significantly abundant in larvae affected by zoea 2 syndrome. The bacterial network at the phylum level for larvae collected from tanks affected by AHPND showed greater complexity and connectivity than in samples collected from tanks affected by zoea 2 syndrome. The bacterial connections inter Vibrio genera were higher in larvae from tanks affected by zoea 2 syndrome, also presenting other connections between the genera Vibrio and Catenococcus. The identification of specific biomarkers found in this study could be useful for understanding the microbial dynamics during different types of vibriosis.