Cargando…
Identification of an optimized glycolytic-related risk signature for predicting the prognosis in breast cancer using integrated bioinformatic analysis
Aberrant metabolic disorders and significant glycolytic alterations in tumor tissues and cells are hallmarks of breast cancer (BC) progression. This study aims to elucidate the key biomarkers and pathways mediating abnormal glycolysis in breast cancer using bioinformatics analysis. Differential gene...
Autores principales: | Jiang, Di, Zhang, Ling-Yu, Wang, Dan-Hua, Liu, Yan-rong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10476720/ https://www.ncbi.nlm.nih.gov/pubmed/37656998 http://dx.doi.org/10.1097/MD.0000000000034715 |
Ejemplares similares
-
A senescence-related signature for predicting the prognosis of breast cancer: A bioinformatics analysis
por: Xing, Tengfei, et al.
Publicado: (2023) -
Identification of candidate biomarkers correlated with the pathogenesis and prognosis of breast cancer via integrated bioinformatics analysis
por: Liu, Shuyu, et al.
Publicado: (2020) -
Establishment of a 6-signature risk model associated with cellular senescence for predicting the prognosis of breast cancer
por: Zhang, Xiu-Xia, et al.
Publicado: (2023) -
Identification of early diagnostic biomarkers for breast cancer through bioinformatics analysis
por: Yan, Shaozhang, et al.
Publicado: (2023) -
Potential value of MicroRNA-21 as a biomarker for predicting the prognosis of patients with breast cancer: A protocol for meta-analysis and bioinformatics analysis
por: Ding, Yunfeng, et al.
Publicado: (2021)