Cargando…

Uncovering anti-influenza mechanism of Ophiocordyceps sinensis using network pharmacology, molecular pharmacology, and metabolomics

Ophiocordyceps sinensis is a precious Chinese traditional herb with a long medicinal history. This study used UPLC-MS metabolomics to explore and compare the metabolic profiles of the stroma (OSBSz), sclerotium (OSBSh), and mycelium (OSBS) of O sinensis to analyze their differential metabolites and...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Jinna, Wang, Mu, Sun, Tao, Zhou, Xiaorong, Wang, Jinhu, Wang, Yao, Zhang, Ran, Luo, Run, Yu, Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10476752/
https://www.ncbi.nlm.nih.gov/pubmed/37657041
http://dx.doi.org/10.1097/MD.0000000000034843
_version_ 1785100999184089088
author Zhou, Jinna
Wang, Mu
Sun, Tao
Zhou, Xiaorong
Wang, Jinhu
Wang, Yao
Zhang, Ran
Luo, Run
Yu, Hong
author_facet Zhou, Jinna
Wang, Mu
Sun, Tao
Zhou, Xiaorong
Wang, Jinhu
Wang, Yao
Zhang, Ran
Luo, Run
Yu, Hong
author_sort Zhou, Jinna
collection PubMed
description Ophiocordyceps sinensis is a precious Chinese traditional herb with a long medicinal history. This study used UPLC-MS metabolomics to explore and compare the metabolic profiles of the stroma (OSBSz), sclerotium (OSBSh), and mycelium (OSBS) of O sinensis to analyze their differential metabolites and identified potential active components. Then combined with network pharmacology and molecular docking to explore the mechanism of differential metabolites with anti-influenza properties. The results indicate that the stroma, sclerotium, and mycelium showed significant differences in metabolites. The key pathways for differential metabolites were butanoate metabolism, thiamin metabolism, alanine, aspartate and glutamate metabolism, citrate cycle, and arginine biosynthesis. Protein-protein interaction analysis identified potential targets, including SRC, RHOA, HSP90AA1, VEGFA, ITGB1, PRKCA, and ITGA1, and the key protective pathways in-volved PI3K-Akt, HIF-1, influenza A, and Coronavirus disease 2019. The molecular docking results showed that the core metabolite D-(−)-glutamine has high binding affinity with SRC, RHOA, and EGFR, re-flecting the multi-component and multi-target network system of O sinensis. In short, the combination of metabonomics, network pharmacology and macromolecular docking technology provides a new way to explore the anti-influenza research of O sinensis. This is undoubtedly an important theoretical support for the clinical application of O sinensis in the future.
format Online
Article
Text
id pubmed-10476752
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Lippincott Williams & Wilkins
record_format MEDLINE/PubMed
spelling pubmed-104767522023-09-05 Uncovering anti-influenza mechanism of Ophiocordyceps sinensis using network pharmacology, molecular pharmacology, and metabolomics Zhou, Jinna Wang, Mu Sun, Tao Zhou, Xiaorong Wang, Jinhu Wang, Yao Zhang, Ran Luo, Run Yu, Hong Medicine (Baltimore) 3700 Ophiocordyceps sinensis is a precious Chinese traditional herb with a long medicinal history. This study used UPLC-MS metabolomics to explore and compare the metabolic profiles of the stroma (OSBSz), sclerotium (OSBSh), and mycelium (OSBS) of O sinensis to analyze their differential metabolites and identified potential active components. Then combined with network pharmacology and molecular docking to explore the mechanism of differential metabolites with anti-influenza properties. The results indicate that the stroma, sclerotium, and mycelium showed significant differences in metabolites. The key pathways for differential metabolites were butanoate metabolism, thiamin metabolism, alanine, aspartate and glutamate metabolism, citrate cycle, and arginine biosynthesis. Protein-protein interaction analysis identified potential targets, including SRC, RHOA, HSP90AA1, VEGFA, ITGB1, PRKCA, and ITGA1, and the key protective pathways in-volved PI3K-Akt, HIF-1, influenza A, and Coronavirus disease 2019. The molecular docking results showed that the core metabolite D-(−)-glutamine has high binding affinity with SRC, RHOA, and EGFR, re-flecting the multi-component and multi-target network system of O sinensis. In short, the combination of metabonomics, network pharmacology and macromolecular docking technology provides a new way to explore the anti-influenza research of O sinensis. This is undoubtedly an important theoretical support for the clinical application of O sinensis in the future. Lippincott Williams & Wilkins 2023-09-01 /pmc/articles/PMC10476752/ /pubmed/37657041 http://dx.doi.org/10.1097/MD.0000000000034843 Text en Copyright © 2023 the Author(s). Published by Wolters Kluwer Health, Inc. https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial License 4.0 (CCBY-NC) (https://creativecommons.org/licenses/by-nc/4.0/) , where it is permissible to download, share, remix, transform, and buildup the work provided it is properly cited. The work cannot be used commercially without permission from the journal.
spellingShingle 3700
Zhou, Jinna
Wang, Mu
Sun, Tao
Zhou, Xiaorong
Wang, Jinhu
Wang, Yao
Zhang, Ran
Luo, Run
Yu, Hong
Uncovering anti-influenza mechanism of Ophiocordyceps sinensis using network pharmacology, molecular pharmacology, and metabolomics
title Uncovering anti-influenza mechanism of Ophiocordyceps sinensis using network pharmacology, molecular pharmacology, and metabolomics
title_full Uncovering anti-influenza mechanism of Ophiocordyceps sinensis using network pharmacology, molecular pharmacology, and metabolomics
title_fullStr Uncovering anti-influenza mechanism of Ophiocordyceps sinensis using network pharmacology, molecular pharmacology, and metabolomics
title_full_unstemmed Uncovering anti-influenza mechanism of Ophiocordyceps sinensis using network pharmacology, molecular pharmacology, and metabolomics
title_short Uncovering anti-influenza mechanism of Ophiocordyceps sinensis using network pharmacology, molecular pharmacology, and metabolomics
title_sort uncovering anti-influenza mechanism of ophiocordyceps sinensis using network pharmacology, molecular pharmacology, and metabolomics
topic 3700
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10476752/
https://www.ncbi.nlm.nih.gov/pubmed/37657041
http://dx.doi.org/10.1097/MD.0000000000034843
work_keys_str_mv AT zhoujinna uncoveringantiinfluenzamechanismofophiocordycepssinensisusingnetworkpharmacologymolecularpharmacologyandmetabolomics
AT wangmu uncoveringantiinfluenzamechanismofophiocordycepssinensisusingnetworkpharmacologymolecularpharmacologyandmetabolomics
AT suntao uncoveringantiinfluenzamechanismofophiocordycepssinensisusingnetworkpharmacologymolecularpharmacologyandmetabolomics
AT zhouxiaorong uncoveringantiinfluenzamechanismofophiocordycepssinensisusingnetworkpharmacologymolecularpharmacologyandmetabolomics
AT wangjinhu uncoveringantiinfluenzamechanismofophiocordycepssinensisusingnetworkpharmacologymolecularpharmacologyandmetabolomics
AT wangyao uncoveringantiinfluenzamechanismofophiocordycepssinensisusingnetworkpharmacologymolecularpharmacologyandmetabolomics
AT zhangran uncoveringantiinfluenzamechanismofophiocordycepssinensisusingnetworkpharmacologymolecularpharmacologyandmetabolomics
AT luorun uncoveringantiinfluenzamechanismofophiocordycepssinensisusingnetworkpharmacologymolecularpharmacologyandmetabolomics
AT yuhong uncoveringantiinfluenzamechanismofophiocordycepssinensisusingnetworkpharmacologymolecularpharmacologyandmetabolomics