Cargando…
Molecular mechanism of Ruxian Shuhou prescription in the treatment of triple-negative breast cancer based on network pharmacology
We aimed to explore the molecular mechanism of Ruxian Shuhou prescription in the treatment of triple-negative breast cancer (TNBC) by using network pharmacology. The active components and targets of the prescription were obtained by Traditional Chinese medicine systems pharmacology database. Gencard...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10476815/ https://www.ncbi.nlm.nih.gov/pubmed/37657065 http://dx.doi.org/10.1097/MD.0000000000034763 |
Sumario: | We aimed to explore the molecular mechanism of Ruxian Shuhou prescription in the treatment of triple-negative breast cancer (TNBC) by using network pharmacology. The active components and targets of the prescription were obtained by Traditional Chinese medicine systems pharmacology database. Gencards database, online mendelian inheritance in man database, therapeutic target database, and DRUGBANK database were used to search for the TNBC-related targets. The potential targets of Ruxian Shuhou prescription for TNBC were screened out by the intersection of effective ingredient action targets and disease targets. A herb-active ingredient-target network was constructed and analyzed for key ingredients. A protein-protein interaction network was constructed for studying key targets. Furthermore, gene ontology analysis and Kyoto encyclopedia of genes and genomes pathway enrichment analysis were carried out. Finally, the relationship between key ingredients and key genes was evaluated by molecular docking. The key ingredients of Ruxian Shuhou prescription for the treatment of TNBC may be Quercetin, Luteolin and Kaempferol, while the key therapeutic targets may be protein kinase B, interleukin-6, cellular tumor antigen p53, and vascular endothelial growth factor A. The related signaling pathways were mainly involved in tumor, apoptosis and virus infection, among which the PI3K-Akt signaling pathway was the most closely related to TNBC. Molecular docking showed that the key ingredients had high binding activity with the key targets. The molecular mechanisms of Ruxian Shuhou prescription for TNBC are likely to involve multi-ingredient, multi-target and multi-pathway. |
---|