Cargando…
Proof‐of‐concept study of artificial intelligence‐assisted review of CBCT image guidance
PURPOSE: Automation and computer assistance can support quality assurance tasks in radiotherapy. Retrospective image review requires significant human resources, and automation of image review remains a noteworthy missing element in previous work. Here, we present initial findings from a proof‐of‐co...
Autores principales: | Neylon, Jack, Luximon, Dishane C., Ritter, Timothy, Lamb, James M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10476980/ https://www.ncbi.nlm.nih.gov/pubmed/37165761 http://dx.doi.org/10.1002/acm2.14016 |
Ejemplares similares
-
Feasibility of a deep-learning based anatomical region labeling tool for Cone-Beam Computed Tomography scans in radiotherapy
por: Luximon, Dishane C, et al.
Publicado: (2023) -
Influence of acquisition parameters on MV‐CBCT image quality
por: Gayou, Olivier
Publicado: (2012) -
Assessment of image quality and dose calculation accuracy on kV CBCT, MV CBCT, and MV CT images for urgent palliative radiotherapy treatments
por: Held, Mareike, et al.
Publicado: (2016) -
Artificial Intelligence in Medicine and Radiation Oncology
por: Weidlich, Vincent, et al.
Publicado: (2018) -
Contextual loss based artifact removal method on CBCT image
por: Xie, Shipeng, et al.
Publicado: (2020)