Cargando…
Deep learning‐based classification of organs at risk and delineation guideline in pelvic cancer radiation therapy
Deep learning (DL) models for radiation therapy (RT) image segmentation require accurately annotated training data. Multiple organ delineation guidelines exist; however, information on the used guideline is not provided with the delineation. Extraction of training data with coherent guidelines can t...
Autores principales: | Lempart, Michael, Scherman, Jonas, Nilsson, Martin P., Jamtheim Gustafsson, Christian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10476996/ https://www.ncbi.nlm.nih.gov/pubmed/37177830 http://dx.doi.org/10.1002/acm2.14022 |
Ejemplares similares
-
Deep learning‐based classification and structure name standardization for organ at risk and target delineations in prostate cancer radiotherapy
por: Jamtheim Gustafsson, Christian, et al.
Publicado: (2021) -
Pelvic U-Net: multi-label semantic segmentation of pelvic organs at risk for radiation therapy anal cancer patients using a deeply supervised shuffle attention convolutional neural network
por: Lempart, Michael, et al.
Publicado: (2022) -
Delineation of Radiation Therapy Target Volumes for Lingual Nerve Involvement
por: Sozio, Stephen J, et al.
Publicado: (2022) -
Local Recurrence Following Total Marrow Radiation: Implications for Clinical Target Delineation
por: Hara, Jared H, et al.
Publicado: (2020) -
Volumetric modulated arc therapy dose prediction and deliverable treatment plan generation for prostate cancer patients using a densely connected deep learning model
por: Lempart, Michael, et al.
Publicado: (2021)