Cargando…
Self‐adaption and texture generation: A hybrid loss function for low‐dose CT denoising
BACKGROUND: Deep learning has been successfully applied to low‐dose CT (LDCT) denoising. But the training of the model is very dependent on an appropriate loss function. Existing denoising models often use per‐pixel loss, including mean abs error (MAE) and mean square error (MSE). This ignores the d...
Autores principales: | Wang, Zhenchuan, Liu, Minghui, Cheng, Xuan, Zhu, Jinqi, Wang, Xiaomin, Gong, Haigang, Liu, Ming, Xu, Lifeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10476999/ https://www.ncbi.nlm.nih.gov/pubmed/37571834 http://dx.doi.org/10.1002/acm2.14113 |
Ejemplares similares
-
Image texture and radiation dose properties in CT
por: Mozejko, Dawid, et al.
Publicado: (2016) -
Reliability of CT‐based texture features: Phantom study
por: Varghese, Bino A., et al.
Publicado: (2019) -
Low-Dose CT Image Denoising with Improving WGAN and Hybrid Loss Function
por: Li, Zhihua, et al.
Publicado: (2021) -
Joint application of hybrid iterative reconstruction and adaptive filters on neck‐and‐shoulder CT imaging: A clinical evaluation
por: Jin, Wenfeng, et al.
Publicado: (2022) -
Applying a CT texture analysis model trained with deep‐learning reconstruction images to iterative reconstruction images in pulmonary nodule diagnosis
por: Wang, Qingle, et al.
Publicado: (2022)