Cargando…

Defense mechanism of Fe(III)-assisted anammox under salt stress: Performance and microbial community dynamics

Anammox process has attracted attention due to its excellent nitrogen removal properties in nitrogen-rich wastewater treatment. However, there were some obstacles for the application of anammox to treat high saline wastewater due to its sensitivity to salinity. In this study, Fe(III) addition strate...

Descripción completa

Detalles Bibliográficos
Autores principales: Yin, Shuyan, Jiang, Xinbai, Wang, Yuming, Yang, Yang, Chen, Dan, Shen, Jinyou
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10477044/
https://www.ncbi.nlm.nih.gov/pubmed/37671038
http://dx.doi.org/10.1016/j.wroa.2023.100188
Descripción
Sumario:Anammox process has attracted attention due to its excellent nitrogen removal properties in nitrogen-rich wastewater treatment. However, there were some obstacles for the application of anammox to treat high saline wastewater due to its sensitivity to salinity. In this study, Fe(III) addition strategy was developed to assist anammox to adapt high saline surroundings, with the defense mechanism involved in Fe(III)-assisted anammox emphasized. Nitrogen removal performance of anammox was deteriorated at 3.5% salinity, with the average total nitrogen removal rate of 0.85 kg/(m(3)·d) observed. The continuous addition of Fe(III) could significantly assist anammox to resist high salinity through facilitating the enrichment of anammox species. Candidatus Kuenenia was the main anammox species and outcompeted Candidatus Brocadia under high saline surrounding. The relative abundance of Candidatus Kuenenia increased with increased salinity and reached 41.04% under 3.5% salinity. The synthesis of key enzymes of anammox species were improved through Fe(III) addition and then facilitated the energy metabolism of anammox bacteria under 3.5% salinity. This study provides a new thought in Fe(III)-assisted anammox enhancement technologies and deepens the insight of anammox in high saline wastewater treatment.