Cargando…
Road traffic can be predicted by machine learning equally effectively as by complex microscopic model
Since high-quality real data acquired from selected road sections are not always available, a traffic control solution can use data from software traffic simulators working offline. The results show that in contrast to microscopic traffic simulation, the algorithms employing neural networks can work...
Autores principales: | Sroczyński, Andrzej, Czyżewski, Andrzej |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10477175/ https://www.ncbi.nlm.nih.gov/pubmed/37666950 http://dx.doi.org/10.1038/s41598-023-41902-y |
Ejemplares similares
-
Mortality-Risk Prediction Model from Road-Traffic Injury in Drunk Drivers: Machine Learning Approach
por: Sirikul, Wachiranun, et al.
Publicado: (2021) -
On the road to equality
por: Wade, Jessica
Publicado: (2018) -
Developing machine-learning-based models to diminish the severity of injuries sustained by pedestrians in road traffic incidents
por: Elalouf, Amir, et al.
Publicado: (2023) -
Modelling of road traffic fatalities in India
por: Goel, Rahul
Publicado: (2018) -
Predictability of Road Traffic and Congestion in Urban Areas
por: Wang, Jingyuan, et al.
Publicado: (2015)