Cargando…
EEG feature selection method based on maximum information coefficient and quantum particle swarm
To reduce the dimensionality of EEG features and improve classification accuracy, we propose an improved hybrid feature selection method for EEG feature selection. First, MIC is used to remove irrelevant features and redundant features to reduce the search space of the second stage. QPSO is then use...
Autores principales: | Chen, Wan, Cai, Yanping, Li, Aihua, Su, Yanzhao, Jiang, Ke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10477332/ https://www.ncbi.nlm.nih.gov/pubmed/37666919 http://dx.doi.org/10.1038/s41598-023-41682-5 |
Ejemplares similares
-
Selectively-informed particle swarm optimization
por: Gao, Yang, et al.
Publicado: (2015) -
Feature Selection and Classifier Parameters Estimation for EEG Signals Peak Detection Using Particle Swarm Optimization
por: Adam, Asrul, et al.
Publicado: (2014) -
Particle swarm optimisation: classical and quantum perspectives
por: Sun, Jun, et al.
Publicado: (2016) -
Fractional-order quantum particle swarm optimization
por: Xu, Lai, et al.
Publicado: (2019) -
EEG Channel Selection Using Particle Swarm Optimization for the Classification of Auditory Event-Related Potentials
por: Gonzalez, Alejandro, et al.
Publicado: (2014)