Cargando…
Proteome analysis, bioinformatic prediction and experimental evidence revealed immune response down-regulation function for serum-starved human fibroblasts()
Emerging evidence indicates that fibroblasts play pivotal roles in immunoregulation by producing various proteins under health and disease states. In the present study, for the first time, we compared the proteomes of serum-starved human skin fibroblasts and peripheral blood mononuclear cells (PBMCs...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10477462/ https://www.ncbi.nlm.nih.gov/pubmed/37674821 http://dx.doi.org/10.1016/j.heliyon.2023.e19238 |
_version_ | 1785101155303424000 |
---|---|
author | Jafari, Negar Gheitasi, Reza Khorasani, Hamid Reza Golpour, Monireh Mehri, Maryam Nayeri, Kosar Pourbagher, Roghayeh Mostafazadeh, Mobina Kalali, Behnam Mostafazadeh, Amrollah |
author_facet | Jafari, Negar Gheitasi, Reza Khorasani, Hamid Reza Golpour, Monireh Mehri, Maryam Nayeri, Kosar Pourbagher, Roghayeh Mostafazadeh, Mobina Kalali, Behnam Mostafazadeh, Amrollah |
author_sort | Jafari, Negar |
collection | PubMed |
description | Emerging evidence indicates that fibroblasts play pivotal roles in immunoregulation by producing various proteins under health and disease states. In the present study, for the first time, we compared the proteomes of serum-starved human skin fibroblasts and peripheral blood mononuclear cells (PBMCs) using Nano-LC-ESI-tandem mass spectrometry. This analysis contributes to a better understanding of the underlying molecular mechanisms of chronic inflammation and cancer, which are intrinsically accompanied by growth factor deficiency. The proteomes of starved fibroblasts and PBMCs consisted of 307 and 294 proteins, respectively, which are involved in lymphocyte migration, complement activation, inflammation, acute phase response, and immune regulation. Starved fibroblasts predominantly produced extracellular matrix-related proteins such as collagen/collagenase, while PBMCs produced focal adhesion-related proteins like beta-parvin and vinculin which are involved in lymphocyte migration. PBMCs produced a more diverse set of inflammatory molecules like heat shock proteins, while fibroblasts produced human leukocytes antigen-G and -E that are known as main immunomodulatory molecules. Fifty-four proteins were commonly found in both proteomes, including serum albumin, amyloid-beta, heat shock cognate 71 kDa, and complement C3. GeneMANIA bioinformatic tool predicted 418 functions for PBMCs, including reactive oxygen species metabolic processes and 241 functions for starved fibroblasts such as antigen processing and presentation including non-classical MHC -Ib pathway, and negative regulation of the immune response. Protein-protein interactions network analysis indicated the immunosuppressive function for starved fibroblasts-derived human leucocytes antigen-G and –E. Moreover, in an in vitro model of allogeneic transplantation, the immunosuppressive activity of starved fibroblasts was experimentally documented. CONCLUSION: Under serum starvation-induced metabolic stress, both PBMCs and fibroblasts produced molecules like heat shock proteins and amyloid-beta, which can have pathogenic roles in auto-inflammatory diseases such as rheumatoid arthritis, type 1 diabetes mellitus, systemic lupus erythematosus, aging, and cancer. However, starved fibroblasts showed immunosuppressive activity in an in vitro model of allogeneic transplantation, suggesting their potential to modify such adverse reactions by down-regulating the immune system. |
format | Online Article Text |
id | pubmed-10477462 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-104774622023-09-06 Proteome analysis, bioinformatic prediction and experimental evidence revealed immune response down-regulation function for serum-starved human fibroblasts() Jafari, Negar Gheitasi, Reza Khorasani, Hamid Reza Golpour, Monireh Mehri, Maryam Nayeri, Kosar Pourbagher, Roghayeh Mostafazadeh, Mobina Kalali, Behnam Mostafazadeh, Amrollah Heliyon Research Article Emerging evidence indicates that fibroblasts play pivotal roles in immunoregulation by producing various proteins under health and disease states. In the present study, for the first time, we compared the proteomes of serum-starved human skin fibroblasts and peripheral blood mononuclear cells (PBMCs) using Nano-LC-ESI-tandem mass spectrometry. This analysis contributes to a better understanding of the underlying molecular mechanisms of chronic inflammation and cancer, which are intrinsically accompanied by growth factor deficiency. The proteomes of starved fibroblasts and PBMCs consisted of 307 and 294 proteins, respectively, which are involved in lymphocyte migration, complement activation, inflammation, acute phase response, and immune regulation. Starved fibroblasts predominantly produced extracellular matrix-related proteins such as collagen/collagenase, while PBMCs produced focal adhesion-related proteins like beta-parvin and vinculin which are involved in lymphocyte migration. PBMCs produced a more diverse set of inflammatory molecules like heat shock proteins, while fibroblasts produced human leukocytes antigen-G and -E that are known as main immunomodulatory molecules. Fifty-four proteins were commonly found in both proteomes, including serum albumin, amyloid-beta, heat shock cognate 71 kDa, and complement C3. GeneMANIA bioinformatic tool predicted 418 functions for PBMCs, including reactive oxygen species metabolic processes and 241 functions for starved fibroblasts such as antigen processing and presentation including non-classical MHC -Ib pathway, and negative regulation of the immune response. Protein-protein interactions network analysis indicated the immunosuppressive function for starved fibroblasts-derived human leucocytes antigen-G and –E. Moreover, in an in vitro model of allogeneic transplantation, the immunosuppressive activity of starved fibroblasts was experimentally documented. CONCLUSION: Under serum starvation-induced metabolic stress, both PBMCs and fibroblasts produced molecules like heat shock proteins and amyloid-beta, which can have pathogenic roles in auto-inflammatory diseases such as rheumatoid arthritis, type 1 diabetes mellitus, systemic lupus erythematosus, aging, and cancer. However, starved fibroblasts showed immunosuppressive activity in an in vitro model of allogeneic transplantation, suggesting their potential to modify such adverse reactions by down-regulating the immune system. Elsevier 2023-08-22 /pmc/articles/PMC10477462/ /pubmed/37674821 http://dx.doi.org/10.1016/j.heliyon.2023.e19238 Text en © 2023 The Authors. Published by Elsevier Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Jafari, Negar Gheitasi, Reza Khorasani, Hamid Reza Golpour, Monireh Mehri, Maryam Nayeri, Kosar Pourbagher, Roghayeh Mostafazadeh, Mobina Kalali, Behnam Mostafazadeh, Amrollah Proteome analysis, bioinformatic prediction and experimental evidence revealed immune response down-regulation function for serum-starved human fibroblasts() |
title | Proteome analysis, bioinformatic prediction and experimental evidence revealed immune response down-regulation function for serum-starved human fibroblasts() |
title_full | Proteome analysis, bioinformatic prediction and experimental evidence revealed immune response down-regulation function for serum-starved human fibroblasts() |
title_fullStr | Proteome analysis, bioinformatic prediction and experimental evidence revealed immune response down-regulation function for serum-starved human fibroblasts() |
title_full_unstemmed | Proteome analysis, bioinformatic prediction and experimental evidence revealed immune response down-regulation function for serum-starved human fibroblasts() |
title_short | Proteome analysis, bioinformatic prediction and experimental evidence revealed immune response down-regulation function for serum-starved human fibroblasts() |
title_sort | proteome analysis, bioinformatic prediction and experimental evidence revealed immune response down-regulation function for serum-starved human fibroblasts() |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10477462/ https://www.ncbi.nlm.nih.gov/pubmed/37674821 http://dx.doi.org/10.1016/j.heliyon.2023.e19238 |
work_keys_str_mv | AT jafarinegar proteomeanalysisbioinformaticpredictionandexperimentalevidencerevealedimmuneresponsedownregulationfunctionforserumstarvedhumanfibroblasts AT gheitasireza proteomeanalysisbioinformaticpredictionandexperimentalevidencerevealedimmuneresponsedownregulationfunctionforserumstarvedhumanfibroblasts AT khorasanihamidreza proteomeanalysisbioinformaticpredictionandexperimentalevidencerevealedimmuneresponsedownregulationfunctionforserumstarvedhumanfibroblasts AT golpourmonireh proteomeanalysisbioinformaticpredictionandexperimentalevidencerevealedimmuneresponsedownregulationfunctionforserumstarvedhumanfibroblasts AT mehrimaryam proteomeanalysisbioinformaticpredictionandexperimentalevidencerevealedimmuneresponsedownregulationfunctionforserumstarvedhumanfibroblasts AT nayerikosar proteomeanalysisbioinformaticpredictionandexperimentalevidencerevealedimmuneresponsedownregulationfunctionforserumstarvedhumanfibroblasts AT pourbagherroghayeh proteomeanalysisbioinformaticpredictionandexperimentalevidencerevealedimmuneresponsedownregulationfunctionforserumstarvedhumanfibroblasts AT mostafazadehmobina proteomeanalysisbioinformaticpredictionandexperimentalevidencerevealedimmuneresponsedownregulationfunctionforserumstarvedhumanfibroblasts AT kalalibehnam proteomeanalysisbioinformaticpredictionandexperimentalevidencerevealedimmuneresponsedownregulationfunctionforserumstarvedhumanfibroblasts AT mostafazadehamrollah proteomeanalysisbioinformaticpredictionandexperimentalevidencerevealedimmuneresponsedownregulationfunctionforserumstarvedhumanfibroblasts |