Cargando…

Highly porous interconnected MoP decorated graphene oxide as remarkably efficient electrocatalyst

Hydrogen (H(2)) production through water splitting has less viable applications due to the unfavourable kinetics of the reaction. Electrocatalysts with a robust structure, high levels of catalytic activity, and a high degree of stability are in high demand but challenging. This paper reports the syn...

Descripción completa

Detalles Bibliográficos
Autores principales: Khosa, Rafiq, Pervaiz, Erum, Abdullah, Uzair, Sohail, Umair
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10477479/
https://www.ncbi.nlm.nih.gov/pubmed/37674853
http://dx.doi.org/10.1016/j.heliyon.2023.e19313
_version_ 1785101159923449856
author Khosa, Rafiq
Pervaiz, Erum
Abdullah, Uzair
Sohail, Umair
author_facet Khosa, Rafiq
Pervaiz, Erum
Abdullah, Uzair
Sohail, Umair
author_sort Khosa, Rafiq
collection PubMed
description Hydrogen (H(2)) production through water splitting has less viable applications due to the unfavourable kinetics of the reaction. Electrocatalysts with a robust structure, high levels of catalytic activity, and a high degree of stability are in high demand but challenging. This paper reports the synthesis of highly porous interconnected molybdenum phosphide (MoP) assembled with graphene oxide (GO) to form MoP/RGO hybrid electrocatalysts in a novel phosphorization process at a reasonably low temperature under an argon (Ar) atmosphere by a mixing and heat-treating method for the hydrogen evolution reaction (HER). Bifunctional MoP anchored on reduced graphene oxide (MoP/RGO) porous structures exhibited extra permeability for ion and electrolyte transport. An efficient MoP/RGO-based electrocatalyst exhibited brilliant electrocatalytic performance, having HER overpotential of 96 mV at a current density of 10 mA/cm(2) with a low Tafel slope of 64 mV/dec in an alkaline solution. The effectiveness of an optimised electrocatalyst indicates significant HER activity for all intermediate chemical reactions. A highly efficient electrocatalyst also exhibited long-term stability with a minor potential decrease over 24 h. RGO shows great potential as a material possessing remarkable strength in the context of high temperature phosphorization. It effectively hinders particle agglomeration, enhances catalyst conductivity, and ultimately betters both the performance and durability of an electrocatalyst in HER applications.
format Online
Article
Text
id pubmed-10477479
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-104774792023-09-06 Highly porous interconnected MoP decorated graphene oxide as remarkably efficient electrocatalyst Khosa, Rafiq Pervaiz, Erum Abdullah, Uzair Sohail, Umair Heliyon Research Article Hydrogen (H(2)) production through water splitting has less viable applications due to the unfavourable kinetics of the reaction. Electrocatalysts with a robust structure, high levels of catalytic activity, and a high degree of stability are in high demand but challenging. This paper reports the synthesis of highly porous interconnected molybdenum phosphide (MoP) assembled with graphene oxide (GO) to form MoP/RGO hybrid electrocatalysts in a novel phosphorization process at a reasonably low temperature under an argon (Ar) atmosphere by a mixing and heat-treating method for the hydrogen evolution reaction (HER). Bifunctional MoP anchored on reduced graphene oxide (MoP/RGO) porous structures exhibited extra permeability for ion and electrolyte transport. An efficient MoP/RGO-based electrocatalyst exhibited brilliant electrocatalytic performance, having HER overpotential of 96 mV at a current density of 10 mA/cm(2) with a low Tafel slope of 64 mV/dec in an alkaline solution. The effectiveness of an optimised electrocatalyst indicates significant HER activity for all intermediate chemical reactions. A highly efficient electrocatalyst also exhibited long-term stability with a minor potential decrease over 24 h. RGO shows great potential as a material possessing remarkable strength in the context of high temperature phosphorization. It effectively hinders particle agglomeration, enhances catalyst conductivity, and ultimately betters both the performance and durability of an electrocatalyst in HER applications. Elsevier 2023-08-19 /pmc/articles/PMC10477479/ /pubmed/37674853 http://dx.doi.org/10.1016/j.heliyon.2023.e19313 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Article
Khosa, Rafiq
Pervaiz, Erum
Abdullah, Uzair
Sohail, Umair
Highly porous interconnected MoP decorated graphene oxide as remarkably efficient electrocatalyst
title Highly porous interconnected MoP decorated graphene oxide as remarkably efficient electrocatalyst
title_full Highly porous interconnected MoP decorated graphene oxide as remarkably efficient electrocatalyst
title_fullStr Highly porous interconnected MoP decorated graphene oxide as remarkably efficient electrocatalyst
title_full_unstemmed Highly porous interconnected MoP decorated graphene oxide as remarkably efficient electrocatalyst
title_short Highly porous interconnected MoP decorated graphene oxide as remarkably efficient electrocatalyst
title_sort highly porous interconnected mop decorated graphene oxide as remarkably efficient electrocatalyst
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10477479/
https://www.ncbi.nlm.nih.gov/pubmed/37674853
http://dx.doi.org/10.1016/j.heliyon.2023.e19313
work_keys_str_mv AT khosarafiq highlyporousinterconnectedmopdecoratedgrapheneoxideasremarkablyefficientelectrocatalyst
AT pervaizerum highlyporousinterconnectedmopdecoratedgrapheneoxideasremarkablyefficientelectrocatalyst
AT abdullahuzair highlyporousinterconnectedmopdecoratedgrapheneoxideasremarkablyefficientelectrocatalyst
AT sohailumair highlyporousinterconnectedmopdecoratedgrapheneoxideasremarkablyefficientelectrocatalyst