Cargando…
An effective fusion model for seizure prediction: GAMRNN
The early prediction of epileptic seizures holds paramount significance in patient care and medical research. Extracting useful spatial-temporal features to facilitate seizure prediction represents a primary challenge in this field. This study proposes GAMRNN, a novel methodology integrating a dual-...
Autores principales: | Ji, Hong, Xu, Ting, Xue, Tao, Xu, Tao, Yan, Zhiqiang, Liu, Yonghong, Chen, Badong, Jiang, Wen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10477703/ https://www.ncbi.nlm.nih.gov/pubmed/37674519 http://dx.doi.org/10.3389/fnins.2023.1246995 |
Ejemplares similares
-
Functional Source Separation for EEG-fMRI Fusion: Application to Steady-State Visual Evoked Potentials
por: Ji, Hong, et al.
Publicado: (2019) -
Patient-specific approach using data fusion and adversarial training for epileptic seizure prediction
por: Yang, Yong, et al.
Publicado: (2023) -
Conflicting Effects of Methylglyoxal and Potential Significance of miRNAs for Seizure Treatment
por: Tao, Hua, et al.
Publicado: (2018) -
Groupwise structural sparsity for discriminative voxels identification
por: Ji, Hong, et al.
Publicado: (2023) -
Epileptic seizures detection and the analysis of optimal seizure prediction horizon based on frequency and phase analysis
por: Jiang, Ximiao, et al.
Publicado: (2023)