Cargando…
Different patterns of intrinsic functional connectivity at the default mode and attentional networks predict crystalized and fluid abilities in childhood
Crystallized abilities are skills used to solve problems based on experience, while fluid abilities are linked to reasoning without evoke prior knowledge. To what extent crystallized and fluid abilities involve dissociated or overlapping neural systems is debatable. Due to often deployed small sampl...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10477707/ https://www.ncbi.nlm.nih.gov/pubmed/37675438 http://dx.doi.org/10.1093/texcom/tgad015 |
Sumario: | Crystallized abilities are skills used to solve problems based on experience, while fluid abilities are linked to reasoning without evoke prior knowledge. To what extent crystallized and fluid abilities involve dissociated or overlapping neural systems is debatable. Due to often deployed small sample sizes or different study settings in prior work, the neural basis of crystallized and fluid abilities in childhood remains largely unknown. Here we analyzed within and between network connectivity patterns from resting-state functional MRI of 2707 children between 9 and 10 years from the ABCD study. We hypothesized that differences in functional connectivity at the default mode network (DMN), ventral, and dorsal attentional networks (VAN, DAN) explain differences in fluid and crystallized abilities. We found that stronger between-network connectivity of the DMN and VAN, DMN and DAN, and VAN and DAN predicted crystallized abilities. Within-network connectivity of the DAN predicted both crystallized and fluid abilities. Our findings reveal that crystallized abilities rely on the functional coupling between attentional networks and the DMN, whereas fluid abilities are associated with a focal connectivity configuration at the DAN. Our study provides new evidence into the neural basis of child intelligence and calls for future comparative research in adulthood during neuropsychiatric diseases. |
---|