Cargando…
JNTX-101, a novel albumin-encapsulated gemcitabine prodrug, is efficacious and operates via caveolin-1-mediated endocytosis
Albumin is an attractive candidate carrier for the development of novel therapeutic drugs. Gemcitabine has been FDA approved for the treatment of solid tumors; however, new drugs that optimize gemcitabine delivery are not available for clinical use. The aim of this study was to test the efficacy of...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10477748/ https://www.ncbi.nlm.nih.gov/pubmed/37674628 http://dx.doi.org/10.1016/j.omto.2023.08.008 |
Sumario: | Albumin is an attractive candidate carrier for the development of novel therapeutic drugs. Gemcitabine has been FDA approved for the treatment of solid tumors; however, new drugs that optimize gemcitabine delivery are not available for clinical use. The aim of this study was to test the efficacy of a novel albumin-encapsulated gemcitabine prodrug, JNTX-101, and investigate whether Cav-1 expression predicts the therapeutic efficacy of JNTX-101. We first determined the treatment efficacy of JNTX-101 in a panel of pancreatic/lung cancer cell lines and found that increases in Cav-1 expression resulted in higher uptake of albumin, while Cav-1 depletion attenuated the sensitivity of cells to JNTX-101. In addition, decreased Cav-1 expression markedly reduced JNTX-101-induced apoptotic cell death in a panel of cells, particularly in low-serum conditions. Furthermore, we tested the therapeutic efficacy of JNTX-101 in xenograft models and the role of Cav-1 in JNTX-101 sensitivity using a Tet-on-inducible tumor model in vivo. Our data suggest that JNTX-101 effectively inhibits cell viability and tumor growth, and that Cav-1 expression dictates optimal sensitivity to JNTX-101. These data indicate that Cav-1 correlates with JNTX-101 sensitivity, especially under nutrient-deprived conditions, and supports a role for Cav-1 as a predictive biomarker for albumin-encapsulated therapeutics such as JNTX-101. |
---|