Cargando…
Gingerol and Chitosan-Based Coating of Thermoformed Orthodontic Aligners: Characterization, Assessment of Anti-Microbial Activity, and Scratch Resistance: An In Vitro Study
Aim To prepare and characterize a 6-gingerol-incorporated chitosan biopolymer for coating on thermoformed aligners and evaluate its scratch resistance and antimicrobial activity. Material and methods In this in vitro study, 6-gingerol extract was prepared, incorporated with chitosan biopolymer into...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cureus
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10477816/ https://www.ncbi.nlm.nih.gov/pubmed/37674946 http://dx.doi.org/10.7759/cureus.42933 |
_version_ | 1785101217128513536 |
---|---|
author | Vas, Nazleen Valerie Jain, Ravindra Kumar Ramachandran, Sathish Kumar |
author_facet | Vas, Nazleen Valerie Jain, Ravindra Kumar Ramachandran, Sathish Kumar |
author_sort | Vas, Nazleen Valerie |
collection | PubMed |
description | Aim To prepare and characterize a 6-gingerol-incorporated chitosan biopolymer for coating on thermoformed aligners and evaluate its scratch resistance and antimicrobial activity. Material and methods In this in vitro study, 6-gingerol extract was prepared, incorporated with chitosan biopolymer into a coating solution and characterized using nuclear magnetic resonance imaging spectroscopy (NMR). Twenty thermoformed aligner samples were exposed to UV radiation for surface activation, then coated with a crosslinking agent. These were divided into four groups of five. The control group consisted of samples dip-coated in a chitosan solution for 15 minutes. The three test groups consisted of samples dip coated in a gingerol-chitosan coating solution, with each group representing the following time periods of dip coating: five, 10, and 15 minutes. The crosslinking of the coating with the aligner material was confirmed by a Fourier transform infrared spectroscopy (FTIR) test. A scratch test was carried out to evaluate the wear resistance of the coating, and the antibacterial properties of the coating were tested using a Disc Diffusion test. Results The NMR analysis confirmed the presence of 6-gingerol in the extract. The coating of 6-Gingerol on aligners was confirmed by FTIR spectroscopy. The wear resistance of aligners coated for 5 minutes, 10 minutes, and 15 minutes was 1.8 ± 0.09 N, 2.3 ± 0.021 N, and 3.06 ± 0.17 N, respectively, and the difference was statistically significant (p<0.05). The aligner coated for 15 minutes exhibited the widest zone of inhibition of up to 2.38 ± 0.44 mm against Streptococcus mutans, and the difference was statistically significant (p<0.05). No antibacterial effect was found against E. Coli. Conclusion A novel coating material with 6-gingerol extract incorporated in chitosan biopolymer was prepared and characterized, followed by coating on thermoformed aligners. The coating showed antibacterial activity against Streptococcus mutans, and both the antimicrobial activity and wear resistance increased with coating duration. |
format | Online Article Text |
id | pubmed-10477816 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cureus |
record_format | MEDLINE/PubMed |
spelling | pubmed-104778162023-09-06 Gingerol and Chitosan-Based Coating of Thermoformed Orthodontic Aligners: Characterization, Assessment of Anti-Microbial Activity, and Scratch Resistance: An In Vitro Study Vas, Nazleen Valerie Jain, Ravindra Kumar Ramachandran, Sathish Kumar Cureus Dentistry Aim To prepare and characterize a 6-gingerol-incorporated chitosan biopolymer for coating on thermoformed aligners and evaluate its scratch resistance and antimicrobial activity. Material and methods In this in vitro study, 6-gingerol extract was prepared, incorporated with chitosan biopolymer into a coating solution and characterized using nuclear magnetic resonance imaging spectroscopy (NMR). Twenty thermoformed aligner samples were exposed to UV radiation for surface activation, then coated with a crosslinking agent. These were divided into four groups of five. The control group consisted of samples dip-coated in a chitosan solution for 15 minutes. The three test groups consisted of samples dip coated in a gingerol-chitosan coating solution, with each group representing the following time periods of dip coating: five, 10, and 15 minutes. The crosslinking of the coating with the aligner material was confirmed by a Fourier transform infrared spectroscopy (FTIR) test. A scratch test was carried out to evaluate the wear resistance of the coating, and the antibacterial properties of the coating were tested using a Disc Diffusion test. Results The NMR analysis confirmed the presence of 6-gingerol in the extract. The coating of 6-Gingerol on aligners was confirmed by FTIR spectroscopy. The wear resistance of aligners coated for 5 minutes, 10 minutes, and 15 minutes was 1.8 ± 0.09 N, 2.3 ± 0.021 N, and 3.06 ± 0.17 N, respectively, and the difference was statistically significant (p<0.05). The aligner coated for 15 minutes exhibited the widest zone of inhibition of up to 2.38 ± 0.44 mm against Streptococcus mutans, and the difference was statistically significant (p<0.05). No antibacterial effect was found against E. Coli. Conclusion A novel coating material with 6-gingerol extract incorporated in chitosan biopolymer was prepared and characterized, followed by coating on thermoformed aligners. The coating showed antibacterial activity against Streptococcus mutans, and both the antimicrobial activity and wear resistance increased with coating duration. Cureus 2023-08-04 /pmc/articles/PMC10477816/ /pubmed/37674946 http://dx.doi.org/10.7759/cureus.42933 Text en Copyright © 2023, Vas et al. https://creativecommons.org/licenses/by/3.0/This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Dentistry Vas, Nazleen Valerie Jain, Ravindra Kumar Ramachandran, Sathish Kumar Gingerol and Chitosan-Based Coating of Thermoformed Orthodontic Aligners: Characterization, Assessment of Anti-Microbial Activity, and Scratch Resistance: An In Vitro Study |
title | Gingerol and Chitosan-Based Coating of Thermoformed Orthodontic Aligners: Characterization, Assessment of Anti-Microbial Activity, and Scratch Resistance: An In Vitro Study |
title_full | Gingerol and Chitosan-Based Coating of Thermoformed Orthodontic Aligners: Characterization, Assessment of Anti-Microbial Activity, and Scratch Resistance: An In Vitro Study |
title_fullStr | Gingerol and Chitosan-Based Coating of Thermoformed Orthodontic Aligners: Characterization, Assessment of Anti-Microbial Activity, and Scratch Resistance: An In Vitro Study |
title_full_unstemmed | Gingerol and Chitosan-Based Coating of Thermoformed Orthodontic Aligners: Characterization, Assessment of Anti-Microbial Activity, and Scratch Resistance: An In Vitro Study |
title_short | Gingerol and Chitosan-Based Coating of Thermoformed Orthodontic Aligners: Characterization, Assessment of Anti-Microbial Activity, and Scratch Resistance: An In Vitro Study |
title_sort | gingerol and chitosan-based coating of thermoformed orthodontic aligners: characterization, assessment of anti-microbial activity, and scratch resistance: an in vitro study |
topic | Dentistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10477816/ https://www.ncbi.nlm.nih.gov/pubmed/37674946 http://dx.doi.org/10.7759/cureus.42933 |
work_keys_str_mv | AT vasnazleenvalerie gingerolandchitosanbasedcoatingofthermoformedorthodonticalignerscharacterizationassessmentofantimicrobialactivityandscratchresistanceaninvitrostudy AT jainravindrakumar gingerolandchitosanbasedcoatingofthermoformedorthodonticalignerscharacterizationassessmentofantimicrobialactivityandscratchresistanceaninvitrostudy AT ramachandransathishkumar gingerolandchitosanbasedcoatingofthermoformedorthodonticalignerscharacterizationassessmentofantimicrobialactivityandscratchresistanceaninvitrostudy |