Cargando…
Fungal COP9 signalosome assembly requires connection of two trimeric intermediates for integration of intrinsic deneddylase
The conserved eight-subunit COP9 signalosome (CSN) is required for multicellular fungal development. The CSN deneddylase cooperates with the Cand1 exchange factor to control replacements of E3 ubiquitin cullin RING ligase receptors, providing specificity to eukaryotic protein degradation. Aspergillu...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10477865/ https://www.ncbi.nlm.nih.gov/pubmed/37603767 http://dx.doi.org/10.1073/pnas.2305049120 |
_version_ | 1785101226689429504 |
---|---|
author | Bakti, Fruzsina Stupperich, Helena Schmitt, Kerstin Valerius, Oliver Köhler, Anna M. Meister, Cindy Strohdiek, Anja Harting, Rebekka Sasse, Christoph Heimel, Kai Neumann, Piotr Ficner, Ralf Braus, Gerhard H. |
author_facet | Bakti, Fruzsina Stupperich, Helena Schmitt, Kerstin Valerius, Oliver Köhler, Anna M. Meister, Cindy Strohdiek, Anja Harting, Rebekka Sasse, Christoph Heimel, Kai Neumann, Piotr Ficner, Ralf Braus, Gerhard H. |
author_sort | Bakti, Fruzsina |
collection | PubMed |
description | The conserved eight-subunit COP9 signalosome (CSN) is required for multicellular fungal development. The CSN deneddylase cooperates with the Cand1 exchange factor to control replacements of E3 ubiquitin cullin RING ligase receptors, providing specificity to eukaryotic protein degradation. Aspergillus nidulans CSN assembles through a heptameric pre-CSN, which is activated by integration of the catalytic CsnE deneddylase. Combined genetic and biochemical approaches provided the assembly choreography within a eukaryotic cell for native fungal CSN. Interactomes of functional GFP-Csn subunit fusions in pre-CSN deficient fungal strains were compared by affinity purifications and mass spectrometry. Two distinct heterotrimeric CSN subcomplexes were identified as pre-CSN assembly intermediates. CsnA-C-H and CsnD-F-G form independently of CsnB, which connects the heterotrimers to a heptamer and enables subsequent integration of CsnE to form the enzymatically active CSN complex. Surveillance mechanisms control accurate Csn subunit amounts and correct cellular localization for sequential assembly since deprivation of Csn subunits changes the abundance and location of remaining Csn subunits. |
format | Online Article Text |
id | pubmed-10477865 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-104778652023-09-06 Fungal COP9 signalosome assembly requires connection of two trimeric intermediates for integration of intrinsic deneddylase Bakti, Fruzsina Stupperich, Helena Schmitt, Kerstin Valerius, Oliver Köhler, Anna M. Meister, Cindy Strohdiek, Anja Harting, Rebekka Sasse, Christoph Heimel, Kai Neumann, Piotr Ficner, Ralf Braus, Gerhard H. Proc Natl Acad Sci U S A Biological Sciences The conserved eight-subunit COP9 signalosome (CSN) is required for multicellular fungal development. The CSN deneddylase cooperates with the Cand1 exchange factor to control replacements of E3 ubiquitin cullin RING ligase receptors, providing specificity to eukaryotic protein degradation. Aspergillus nidulans CSN assembles through a heptameric pre-CSN, which is activated by integration of the catalytic CsnE deneddylase. Combined genetic and biochemical approaches provided the assembly choreography within a eukaryotic cell for native fungal CSN. Interactomes of functional GFP-Csn subunit fusions in pre-CSN deficient fungal strains were compared by affinity purifications and mass spectrometry. Two distinct heterotrimeric CSN subcomplexes were identified as pre-CSN assembly intermediates. CsnA-C-H and CsnD-F-G form independently of CsnB, which connects the heterotrimers to a heptamer and enables subsequent integration of CsnE to form the enzymatically active CSN complex. Surveillance mechanisms control accurate Csn subunit amounts and correct cellular localization for sequential assembly since deprivation of Csn subunits changes the abundance and location of remaining Csn subunits. National Academy of Sciences 2023-08-21 2023-08-29 /pmc/articles/PMC10477865/ /pubmed/37603767 http://dx.doi.org/10.1073/pnas.2305049120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Bakti, Fruzsina Stupperich, Helena Schmitt, Kerstin Valerius, Oliver Köhler, Anna M. Meister, Cindy Strohdiek, Anja Harting, Rebekka Sasse, Christoph Heimel, Kai Neumann, Piotr Ficner, Ralf Braus, Gerhard H. Fungal COP9 signalosome assembly requires connection of two trimeric intermediates for integration of intrinsic deneddylase |
title | Fungal COP9 signalosome assembly requires connection of two trimeric intermediates for integration of intrinsic deneddylase |
title_full | Fungal COP9 signalosome assembly requires connection of two trimeric intermediates for integration of intrinsic deneddylase |
title_fullStr | Fungal COP9 signalosome assembly requires connection of two trimeric intermediates for integration of intrinsic deneddylase |
title_full_unstemmed | Fungal COP9 signalosome assembly requires connection of two trimeric intermediates for integration of intrinsic deneddylase |
title_short | Fungal COP9 signalosome assembly requires connection of two trimeric intermediates for integration of intrinsic deneddylase |
title_sort | fungal cop9 signalosome assembly requires connection of two trimeric intermediates for integration of intrinsic deneddylase |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10477865/ https://www.ncbi.nlm.nih.gov/pubmed/37603767 http://dx.doi.org/10.1073/pnas.2305049120 |
work_keys_str_mv | AT baktifruzsina fungalcop9signalosomeassemblyrequiresconnectionoftwotrimericintermediatesforintegrationofintrinsicdeneddylase AT stupperichhelena fungalcop9signalosomeassemblyrequiresconnectionoftwotrimericintermediatesforintegrationofintrinsicdeneddylase AT schmittkerstin fungalcop9signalosomeassemblyrequiresconnectionoftwotrimericintermediatesforintegrationofintrinsicdeneddylase AT valeriusoliver fungalcop9signalosomeassemblyrequiresconnectionoftwotrimericintermediatesforintegrationofintrinsicdeneddylase AT kohlerannam fungalcop9signalosomeassemblyrequiresconnectionoftwotrimericintermediatesforintegrationofintrinsicdeneddylase AT meistercindy fungalcop9signalosomeassemblyrequiresconnectionoftwotrimericintermediatesforintegrationofintrinsicdeneddylase AT strohdiekanja fungalcop9signalosomeassemblyrequiresconnectionoftwotrimericintermediatesforintegrationofintrinsicdeneddylase AT hartingrebekka fungalcop9signalosomeassemblyrequiresconnectionoftwotrimericintermediatesforintegrationofintrinsicdeneddylase AT sassechristoph fungalcop9signalosomeassemblyrequiresconnectionoftwotrimericintermediatesforintegrationofintrinsicdeneddylase AT heimelkai fungalcop9signalosomeassemblyrequiresconnectionoftwotrimericintermediatesforintegrationofintrinsicdeneddylase AT neumannpiotr fungalcop9signalosomeassemblyrequiresconnectionoftwotrimericintermediatesforintegrationofintrinsicdeneddylase AT ficnerralf fungalcop9signalosomeassemblyrequiresconnectionoftwotrimericintermediatesforintegrationofintrinsicdeneddylase AT brausgerhardh fungalcop9signalosomeassemblyrequiresconnectionoftwotrimericintermediatesforintegrationofintrinsicdeneddylase |