Cargando…

Fungal COP9 signalosome assembly requires connection of two trimeric intermediates for integration of intrinsic deneddylase

The conserved eight-subunit COP9 signalosome (CSN) is required for multicellular fungal development. The CSN deneddylase cooperates with the Cand1 exchange factor to control replacements of E3 ubiquitin cullin RING ligase receptors, providing specificity to eukaryotic protein degradation. Aspergillu...

Descripción completa

Detalles Bibliográficos
Autores principales: Bakti, Fruzsina, Stupperich, Helena, Schmitt, Kerstin, Valerius, Oliver, Köhler, Anna M., Meister, Cindy, Strohdiek, Anja, Harting, Rebekka, Sasse, Christoph, Heimel, Kai, Neumann, Piotr, Ficner, Ralf, Braus, Gerhard H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10477865/
https://www.ncbi.nlm.nih.gov/pubmed/37603767
http://dx.doi.org/10.1073/pnas.2305049120
_version_ 1785101226689429504
author Bakti, Fruzsina
Stupperich, Helena
Schmitt, Kerstin
Valerius, Oliver
Köhler, Anna M.
Meister, Cindy
Strohdiek, Anja
Harting, Rebekka
Sasse, Christoph
Heimel, Kai
Neumann, Piotr
Ficner, Ralf
Braus, Gerhard H.
author_facet Bakti, Fruzsina
Stupperich, Helena
Schmitt, Kerstin
Valerius, Oliver
Köhler, Anna M.
Meister, Cindy
Strohdiek, Anja
Harting, Rebekka
Sasse, Christoph
Heimel, Kai
Neumann, Piotr
Ficner, Ralf
Braus, Gerhard H.
author_sort Bakti, Fruzsina
collection PubMed
description The conserved eight-subunit COP9 signalosome (CSN) is required for multicellular fungal development. The CSN deneddylase cooperates with the Cand1 exchange factor to control replacements of E3 ubiquitin cullin RING ligase receptors, providing specificity to eukaryotic protein degradation. Aspergillus nidulans CSN assembles through a heptameric pre-CSN, which is activated by integration of the catalytic CsnE deneddylase. Combined genetic and biochemical approaches provided the assembly choreography within a eukaryotic cell for native fungal CSN. Interactomes of functional GFP-Csn subunit fusions in pre-CSN deficient fungal strains were compared by affinity purifications and mass spectrometry. Two distinct heterotrimeric CSN subcomplexes were identified as pre-CSN assembly intermediates. CsnA-C-H and CsnD-F-G form independently of CsnB, which connects the heterotrimers to a heptamer and enables subsequent integration of CsnE to form the enzymatically active CSN complex. Surveillance mechanisms control accurate Csn subunit amounts and correct cellular localization for sequential assembly since deprivation of Csn subunits changes the abundance and location of remaining Csn subunits.
format Online
Article
Text
id pubmed-10477865
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-104778652023-09-06 Fungal COP9 signalosome assembly requires connection of two trimeric intermediates for integration of intrinsic deneddylase Bakti, Fruzsina Stupperich, Helena Schmitt, Kerstin Valerius, Oliver Köhler, Anna M. Meister, Cindy Strohdiek, Anja Harting, Rebekka Sasse, Christoph Heimel, Kai Neumann, Piotr Ficner, Ralf Braus, Gerhard H. Proc Natl Acad Sci U S A Biological Sciences The conserved eight-subunit COP9 signalosome (CSN) is required for multicellular fungal development. The CSN deneddylase cooperates with the Cand1 exchange factor to control replacements of E3 ubiquitin cullin RING ligase receptors, providing specificity to eukaryotic protein degradation. Aspergillus nidulans CSN assembles through a heptameric pre-CSN, which is activated by integration of the catalytic CsnE deneddylase. Combined genetic and biochemical approaches provided the assembly choreography within a eukaryotic cell for native fungal CSN. Interactomes of functional GFP-Csn subunit fusions in pre-CSN deficient fungal strains were compared by affinity purifications and mass spectrometry. Two distinct heterotrimeric CSN subcomplexes were identified as pre-CSN assembly intermediates. CsnA-C-H and CsnD-F-G form independently of CsnB, which connects the heterotrimers to a heptamer and enables subsequent integration of CsnE to form the enzymatically active CSN complex. Surveillance mechanisms control accurate Csn subunit amounts and correct cellular localization for sequential assembly since deprivation of Csn subunits changes the abundance and location of remaining Csn subunits. National Academy of Sciences 2023-08-21 2023-08-29 /pmc/articles/PMC10477865/ /pubmed/37603767 http://dx.doi.org/10.1073/pnas.2305049120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Biological Sciences
Bakti, Fruzsina
Stupperich, Helena
Schmitt, Kerstin
Valerius, Oliver
Köhler, Anna M.
Meister, Cindy
Strohdiek, Anja
Harting, Rebekka
Sasse, Christoph
Heimel, Kai
Neumann, Piotr
Ficner, Ralf
Braus, Gerhard H.
Fungal COP9 signalosome assembly requires connection of two trimeric intermediates for integration of intrinsic deneddylase
title Fungal COP9 signalosome assembly requires connection of two trimeric intermediates for integration of intrinsic deneddylase
title_full Fungal COP9 signalosome assembly requires connection of two trimeric intermediates for integration of intrinsic deneddylase
title_fullStr Fungal COP9 signalosome assembly requires connection of two trimeric intermediates for integration of intrinsic deneddylase
title_full_unstemmed Fungal COP9 signalosome assembly requires connection of two trimeric intermediates for integration of intrinsic deneddylase
title_short Fungal COP9 signalosome assembly requires connection of two trimeric intermediates for integration of intrinsic deneddylase
title_sort fungal cop9 signalosome assembly requires connection of two trimeric intermediates for integration of intrinsic deneddylase
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10477865/
https://www.ncbi.nlm.nih.gov/pubmed/37603767
http://dx.doi.org/10.1073/pnas.2305049120
work_keys_str_mv AT baktifruzsina fungalcop9signalosomeassemblyrequiresconnectionoftwotrimericintermediatesforintegrationofintrinsicdeneddylase
AT stupperichhelena fungalcop9signalosomeassemblyrequiresconnectionoftwotrimericintermediatesforintegrationofintrinsicdeneddylase
AT schmittkerstin fungalcop9signalosomeassemblyrequiresconnectionoftwotrimericintermediatesforintegrationofintrinsicdeneddylase
AT valeriusoliver fungalcop9signalosomeassemblyrequiresconnectionoftwotrimericintermediatesforintegrationofintrinsicdeneddylase
AT kohlerannam fungalcop9signalosomeassemblyrequiresconnectionoftwotrimericintermediatesforintegrationofintrinsicdeneddylase
AT meistercindy fungalcop9signalosomeassemblyrequiresconnectionoftwotrimericintermediatesforintegrationofintrinsicdeneddylase
AT strohdiekanja fungalcop9signalosomeassemblyrequiresconnectionoftwotrimericintermediatesforintegrationofintrinsicdeneddylase
AT hartingrebekka fungalcop9signalosomeassemblyrequiresconnectionoftwotrimericintermediatesforintegrationofintrinsicdeneddylase
AT sassechristoph fungalcop9signalosomeassemblyrequiresconnectionoftwotrimericintermediatesforintegrationofintrinsicdeneddylase
AT heimelkai fungalcop9signalosomeassemblyrequiresconnectionoftwotrimericintermediatesforintegrationofintrinsicdeneddylase
AT neumannpiotr fungalcop9signalosomeassemblyrequiresconnectionoftwotrimericintermediatesforintegrationofintrinsicdeneddylase
AT ficnerralf fungalcop9signalosomeassemblyrequiresconnectionoftwotrimericintermediatesforintegrationofintrinsicdeneddylase
AT brausgerhardh fungalcop9signalosomeassemblyrequiresconnectionoftwotrimericintermediatesforintegrationofintrinsicdeneddylase