Cargando…

Celastrol Combats Methicillin‐Resistant Staphylococcus aureus by Targeting Δ(1)‐Pyrroline‐5‐Carboxylate Dehydrogenase

The emergence and rapid spread of methicillin‐resistant Staphylococcus aureus (MRSA) raise a critical need for alternative therapeutic options. New antibacterial drugs and targets are required to combat MRSA‐associated infections. Based on this study, celastrol, a natural product from the roots of T...

Descripción completa

Detalles Bibliográficos
Autores principales: Yuan, Zhongwei, Wang, Jun, Qu, Qianwei, Zhu, Zhenxin, Xu, Marc, Zhao, Mengmeng, Sun, Chongxiang, Peng, Haixin, Huang, Xingyu, Dong, Yue, Dong, Chunliu, Zheng, Yadan, Yuan, Shuguang, Li, Yanhua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10477891/
https://www.ncbi.nlm.nih.gov/pubmed/37381655
http://dx.doi.org/10.1002/advs.202302459
_version_ 1785101232503783424
author Yuan, Zhongwei
Wang, Jun
Qu, Qianwei
Zhu, Zhenxin
Xu, Marc
Zhao, Mengmeng
Sun, Chongxiang
Peng, Haixin
Huang, Xingyu
Dong, Yue
Dong, Chunliu
Zheng, Yadan
Yuan, Shuguang
Li, Yanhua
author_facet Yuan, Zhongwei
Wang, Jun
Qu, Qianwei
Zhu, Zhenxin
Xu, Marc
Zhao, Mengmeng
Sun, Chongxiang
Peng, Haixin
Huang, Xingyu
Dong, Yue
Dong, Chunliu
Zheng, Yadan
Yuan, Shuguang
Li, Yanhua
author_sort Yuan, Zhongwei
collection PubMed
description The emergence and rapid spread of methicillin‐resistant Staphylococcus aureus (MRSA) raise a critical need for alternative therapeutic options. New antibacterial drugs and targets are required to combat MRSA‐associated infections. Based on this study, celastrol, a natural product from the roots of Tripterygium wilfordii Hook. f., effectively combats MRSA in vitro and in vivo. Multi‐omics analysis suggests that the molecular mechanism of action of celastrol may be related to Δ(1)‐pyrroline‐5‐carboxylate dehydrogenase (P5CDH). By comparing the properties of wild‐type and rocA‐deficient MRSA strains, it is demonstrated that P5CDH, the second enzyme of the proline catabolism pathway, is a tentative new target for antibacterial agents. Using molecular docking, bio‐layer interferometry, and enzyme activity assays, it is confirmed that celastrol can affect the function of P5CDH. Furthermore, it is found through site‐directed protein mutagenesis that the Lys205 and Glu208 residues are key for celastrol binding to P5CDH. Finally, mechanistic studies show that celastrol induces oxidative stress and inhibits DNA synthesis by binding to P5CDH. The findings of this study indicate that celastrol is a promising lead compound and validate P5CDH as a potential target for the development of novel drugs against MRSA.
format Online
Article
Text
id pubmed-10477891
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-104778912023-09-06 Celastrol Combats Methicillin‐Resistant Staphylococcus aureus by Targeting Δ(1)‐Pyrroline‐5‐Carboxylate Dehydrogenase Yuan, Zhongwei Wang, Jun Qu, Qianwei Zhu, Zhenxin Xu, Marc Zhao, Mengmeng Sun, Chongxiang Peng, Haixin Huang, Xingyu Dong, Yue Dong, Chunliu Zheng, Yadan Yuan, Shuguang Li, Yanhua Adv Sci (Weinh) Research Articles The emergence and rapid spread of methicillin‐resistant Staphylococcus aureus (MRSA) raise a critical need for alternative therapeutic options. New antibacterial drugs and targets are required to combat MRSA‐associated infections. Based on this study, celastrol, a natural product from the roots of Tripterygium wilfordii Hook. f., effectively combats MRSA in vitro and in vivo. Multi‐omics analysis suggests that the molecular mechanism of action of celastrol may be related to Δ(1)‐pyrroline‐5‐carboxylate dehydrogenase (P5CDH). By comparing the properties of wild‐type and rocA‐deficient MRSA strains, it is demonstrated that P5CDH, the second enzyme of the proline catabolism pathway, is a tentative new target for antibacterial agents. Using molecular docking, bio‐layer interferometry, and enzyme activity assays, it is confirmed that celastrol can affect the function of P5CDH. Furthermore, it is found through site‐directed protein mutagenesis that the Lys205 and Glu208 residues are key for celastrol binding to P5CDH. Finally, mechanistic studies show that celastrol induces oxidative stress and inhibits DNA synthesis by binding to P5CDH. The findings of this study indicate that celastrol is a promising lead compound and validate P5CDH as a potential target for the development of novel drugs against MRSA. John Wiley and Sons Inc. 2023-06-28 /pmc/articles/PMC10477891/ /pubmed/37381655 http://dx.doi.org/10.1002/advs.202302459 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Yuan, Zhongwei
Wang, Jun
Qu, Qianwei
Zhu, Zhenxin
Xu, Marc
Zhao, Mengmeng
Sun, Chongxiang
Peng, Haixin
Huang, Xingyu
Dong, Yue
Dong, Chunliu
Zheng, Yadan
Yuan, Shuguang
Li, Yanhua
Celastrol Combats Methicillin‐Resistant Staphylococcus aureus by Targeting Δ(1)‐Pyrroline‐5‐Carboxylate Dehydrogenase
title Celastrol Combats Methicillin‐Resistant Staphylococcus aureus by Targeting Δ(1)‐Pyrroline‐5‐Carboxylate Dehydrogenase
title_full Celastrol Combats Methicillin‐Resistant Staphylococcus aureus by Targeting Δ(1)‐Pyrroline‐5‐Carboxylate Dehydrogenase
title_fullStr Celastrol Combats Methicillin‐Resistant Staphylococcus aureus by Targeting Δ(1)‐Pyrroline‐5‐Carboxylate Dehydrogenase
title_full_unstemmed Celastrol Combats Methicillin‐Resistant Staphylococcus aureus by Targeting Δ(1)‐Pyrroline‐5‐Carboxylate Dehydrogenase
title_short Celastrol Combats Methicillin‐Resistant Staphylococcus aureus by Targeting Δ(1)‐Pyrroline‐5‐Carboxylate Dehydrogenase
title_sort celastrol combats methicillin‐resistant staphylococcus aureus by targeting δ(1)‐pyrroline‐5‐carboxylate dehydrogenase
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10477891/
https://www.ncbi.nlm.nih.gov/pubmed/37381655
http://dx.doi.org/10.1002/advs.202302459
work_keys_str_mv AT yuanzhongwei celastrolcombatsmethicillinresistantstaphylococcusaureusbytargetingd1pyrroline5carboxylatedehydrogenase
AT wangjun celastrolcombatsmethicillinresistantstaphylococcusaureusbytargetingd1pyrroline5carboxylatedehydrogenase
AT quqianwei celastrolcombatsmethicillinresistantstaphylococcusaureusbytargetingd1pyrroline5carboxylatedehydrogenase
AT zhuzhenxin celastrolcombatsmethicillinresistantstaphylococcusaureusbytargetingd1pyrroline5carboxylatedehydrogenase
AT xumarc celastrolcombatsmethicillinresistantstaphylococcusaureusbytargetingd1pyrroline5carboxylatedehydrogenase
AT zhaomengmeng celastrolcombatsmethicillinresistantstaphylococcusaureusbytargetingd1pyrroline5carboxylatedehydrogenase
AT sunchongxiang celastrolcombatsmethicillinresistantstaphylococcusaureusbytargetingd1pyrroline5carboxylatedehydrogenase
AT penghaixin celastrolcombatsmethicillinresistantstaphylococcusaureusbytargetingd1pyrroline5carboxylatedehydrogenase
AT huangxingyu celastrolcombatsmethicillinresistantstaphylococcusaureusbytargetingd1pyrroline5carboxylatedehydrogenase
AT dongyue celastrolcombatsmethicillinresistantstaphylococcusaureusbytargetingd1pyrroline5carboxylatedehydrogenase
AT dongchunliu celastrolcombatsmethicillinresistantstaphylococcusaureusbytargetingd1pyrroline5carboxylatedehydrogenase
AT zhengyadan celastrolcombatsmethicillinresistantstaphylococcusaureusbytargetingd1pyrroline5carboxylatedehydrogenase
AT yuanshuguang celastrolcombatsmethicillinresistantstaphylococcusaureusbytargetingd1pyrroline5carboxylatedehydrogenase
AT liyanhua celastrolcombatsmethicillinresistantstaphylococcusaureusbytargetingd1pyrroline5carboxylatedehydrogenase