Cargando…
Automatic coronary artery segmentation of CCTA images using UNet with a local contextual transformer
Coronary artery segmentation is an essential procedure in the computer-aided diagnosis of coronary artery disease. It aims to identify and segment the regions of interest in the coronary circulation for further processing and diagnosis. Currently, automatic segmentation of coronary arteries is often...
Autores principales: | Wang, Qianjin, Xu, Lisheng, Wang, Lu, Yang, Xiaofan, Sun, Yu, Yang, Benqiang, Greenwald, Stephen E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10478234/ https://www.ncbi.nlm.nih.gov/pubmed/37675283 http://dx.doi.org/10.3389/fphys.2023.1138257 |
Ejemplares similares
-
PCAT-UNet: UNet-like network fused convolution and transformer for retinal vessel segmentation
por: Chen, Danny, et al.
Publicado: (2022) -
TDD-UNet:Transformer with double decoder UNet for COVID-19 lesions segmentation
por: Huang, Xuping, et al.
Publicado: (2022) -
SeUneter: Channel attentive U-Net for instance segmentation of the cervical spine MRI medical image
por: Zhang, Xiang, et al.
Publicado: (2022) -
Automatic coronary artery plaque thickness comparison between baseline and follow‐up CCTA images
por: Cao, Qing, et al.
Publicado: (2020) -
HUT: Hybrid UNet transformer for brain lesion and tumour segmentation
por: Soh, Wei Kwek, et al.
Publicado: (2023)