Cargando…

Role of the cGAS-STING pathway in radiotherapy for non-small cell lung cancer

One of the most important therapeutic interventions for non-small cell lung cancer is radiotherapy. Ionizing radiation (IR) is classified by traditional radiobiology principles as a direct cytocidal therapeutic agent against cancer, although there is growing recognition of other antitumor immunologi...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Chunsheng, Liang, Yan, Liu, Ning, Sun, Meili
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10478265/
https://www.ncbi.nlm.nih.gov/pubmed/37667279
http://dx.doi.org/10.1186/s13014-023-02335-z
Descripción
Sumario:One of the most important therapeutic interventions for non-small cell lung cancer is radiotherapy. Ionizing radiation (IR) is classified by traditional radiobiology principles as a direct cytocidal therapeutic agent against cancer, although there is growing recognition of other antitumor immunological responses induced by this modality. The most effective therapeutic combinations to harness radiation-generated antitumor immunity and enhance treatment results for malignancies resistant to existing radiotherapy regimens could be determined by a more sophisticated understanding of the immunological pathways created by radiation. Innate immune signaling is triggered by the activation of cGAS-STING, and this promotes adaptive immune responses to help fight cancer. This identifies a molecular mechanism radiation can use to trigger antitumor immune responses by bridging the DNA-damaging ability of IR with the activation of CD8 + cytotoxic T cell-mediated killing of tumors. We also discuss radiotherapy-related parameters that affect cGAS-STING signaling, negative consequences of cGAS-STING activation, and intriguing treatment options being tested in conjunction with IR to support immune activation by activating STING-signaling. Improved therapeutic outcomes will result from a better understanding of how IR promotes cGAS-STING signaling in immune-based treatment regimens that maximize radiotherapy’s anticancer effectiveness.