Cargando…
Using RegGAN to generate synthetic CT images from CBCT images acquired with different linear accelerators
BACKGROUND: The goal was to investigate the feasibility of the registration generative adversarial network (RegGAN) model in image conversion for performing adaptive radiation therapy on the head and neck and its stability under different cone beam computed tomography (CBCT) models. METHODS: A total...
Autores principales: | Li, Zhenkai, Zhang, Qingxian, Li, Haodong, Kong, Lingke, Wang, Huadong, Liang, Benzhe, Chen, Mingming, Qin, Xiaohang, Yin, Yong, Li, Zhenjiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10478281/ https://www.ncbi.nlm.nih.gov/pubmed/37670252 http://dx.doi.org/10.1186/s12885-023-11274-7 |
Ejemplares similares
-
Improving CBCT image quality to the CT level using RegGAN in esophageal cancer adaptive radiotherapy
por: Wang, Hao, et al.
Publicado: (2023) -
Comparison of an in‐house hybrid DIR method to NiftyReg on CBCT and CT images for head and neck cancer
por: Jiang, Chunling, et al.
Publicado: (2022) -
Synthetic Inflammation Imaging with PatchGAN Deep Learning Networks
por: Tolpadi, Aniket A., et al.
Publicado: (2023) -
GAN-based synthetic brain PET image generation
por: Islam, Jyoti, et al.
Publicado: (2020) -
A Comparison Study Between CNN-Based Deformed Planning CT and CycleGAN-Based Synthetic CT Methods for Improving iCBCT Image Quality
por: Yang, Bo, et al.
Publicado: (2022)