Cargando…

The effect of low-frequency high-intensity ultrasound combined with aspirin on tooth movement in rats

BACKGROUND: Given the difficulties or incapacity of teeth movement in orthodontic treatment, the ways to speed tooth movement must be investigated. Besides, nonsteroidal anti-inflammatory drugs (NSAIDs) were utilized to treat pain caused by tooth movement during orthodontic treatment. The purpose of...

Descripción completa

Detalles Bibliográficos
Autores principales: Xin, Jiao, Zhan, Xinxin, Zheng, Fu, Li, Huazhi, Wang, Yixiang, Li, Cuiying, Jiang, Jiuhui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10478369/
https://www.ncbi.nlm.nih.gov/pubmed/37670292
http://dx.doi.org/10.1186/s12903-023-03359-3
Descripción
Sumario:BACKGROUND: Given the difficulties or incapacity of teeth movement in orthodontic treatment, the ways to speed tooth movement must be investigated. Besides, nonsteroidal anti-inflammatory drugs (NSAIDs) were utilized to treat pain caused by tooth movement during orthodontic treatment. The purpose of this study is to examine the impact of aspirin and low-frequency high-intensity ultrasound (LFHIU) on rat orthodontic tooth movement in rats. METHODS: Thirty-six male Sprague-Dawley rats were divided into three groups: orthodontic (O), ultrasound-treated orthodontic (OU), and ultrasound-treated orthodontic with aspirin gavage (OUA) group. In the OU and OUA group, LFHIU (44 W/cm2, 28 kHz) was applied to the buccal side of the maxillary first molar alveolar bone for 10 s every day. In the OUA group, aspirin was given by gavage every day. The rats were sacrificed on days 1, 3, 7, and 14. RESULTS: After ultrasonic treatment, the speed of tooth movement was increased by about 1.5 times. And the number of osteoclasts considerably increased by about 2 times. However, they decreased slightly after aspirin gavage. By Applying ultrasound therapy, Receptor Activator for Nuclear Factor-κ B Ligand (RANKL) levels in periodontal tissue were elevated. Aspirin was able to reduce these increases. Results from Micro Computed Tomography (Micro-CT) revealed that bone mineral density decreased by about 1/5 after ultrasound treatment on the compression side. The rate of bone mineral apposition indicated that bone was forming under tension, and that of the OU group increased by about 1.3 times that O group. CONCLUSIONS: Although aspirin slowed this trend, LFHIU still enhanced overall tooth mobility in orthodontic treatment.