Cargando…
An observational, sequential analysis of the relationship between local economic distress and inequities in health outcomes, clinical care, health behaviors, and social determinants of health
BACKGROUND: Socioeconomic status has long been associated with population health and health outcomes. While ameliorating social determinants of health may improve health, identifying and targeting areas where feasible interventions are most needed would help improve health equity. We sought to ident...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10478428/ https://www.ncbi.nlm.nih.gov/pubmed/37670348 http://dx.doi.org/10.1186/s12939-023-01984-6 |
Sumario: | BACKGROUND: Socioeconomic status has long been associated with population health and health outcomes. While ameliorating social determinants of health may improve health, identifying and targeting areas where feasible interventions are most needed would help improve health equity. We sought to identify inequities in health and social determinants of health (SDOH) associated with local economic distress at the county-level. METHODS: For 3,131 counties in the 50 US states and Washington, DC (wherein approximately 325,711,203 people lived in 2019), we conducted a retrospective analysis of county-level data collected from County Health Rankings in two periods (centering around 2015 and 2019). We used ANOVA to compare thirty-three measures across five health and SDOH domains (Health Outcomes, Clinical Care, Health Behaviors, Physical Environment, and Social and Economic Factors) that were available in both periods, changes in measures between periods, and ratios of measures for the least to most prosperous counties across county-level prosperity quintiles, based on the Economic Innovation Group’s 2015–2019 Distressed Community Index Scores. RESULTS: With seven exceptions, in both periods, we found a worsening of values with each progression from more to less prosperous counties, with least prosperous counties having the worst values (ANOVA p < 0.001 for all measures). Between 2015 and 2019, all except six measures progressively worsened when comparing higher to lower prosperity quintiles, and gaps between the least and most prosperous counties generally widened. CONCLUSIONS: In the late 2010s, the least prosperous US counties overwhelmingly had worse values in measures of Health Outcomes, Clinical Care, Health Behaviors, the Physical Environment, and Social and Economic Factors than more prosperous counties. Between 2015 and 2019, for most measures, inequities between the least and most prosperous counties widened. Our findings suggest that local economic prosperity may serve as a proxy for health and SDOH status of the community. Policymakers and leaders in public and private sectors might use long-term, targeted economic stimuli in low prosperity counties to generate local, community health benefits for vulnerable populations. Doing so could sustainably improve health; not doing so will continue to generate poor health outcomes and ever-widening economic disparities. |
---|