Cargando…
Predicted models and CCP4
In late 2020, the results of CASP14, the 14th event in a series of competitions to assess the latest developments in computational protein structure-prediction methodology, revealed the giant leap forward that had been made by Google’s Deepmind in tackling the prediction problem. The level of accura...
Autores principales: | Simpkin, Adam J., Caballero, Iracema, McNicholas, Stuart, Stevenson, Kyle, Jiménez, Elisabet, Sánchez Rodríguez, Filomeno, Fando, Maria, Uski, Ville, Ballard, Charles, Chojnowski, Grzegorz, Lebedev, Andrey, Krissinel, Eugene, Usón, Isabel, Rigden, Daniel J., Keegan, Ronan M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10478639/ https://www.ncbi.nlm.nih.gov/pubmed/37594303 http://dx.doi.org/10.1107/S2059798323006289 |
Ejemplares similares
-
CCP4 Cloud for structure determination and project management in macromolecular crystallography
por: Krissinel, Eugene, et al.
Publicado: (2022) -
Using deep-learning predictions of inter-residue distances for model validation
por: Sánchez Rodríguez, Filomeno, et al.
Publicado: (2022) -
The CCP4 suite: integrative software for macromolecular crystallography
por: Agirre, Jon, et al.
Publicado: (2023) -
Modelling covalent linkages in CCP4
por: Nicholls, Robert A., et al.
Publicado: (2021) -
Using Phaser and ensembles to improve the performance of SIMBAD
por: Simpkin, Adam J., et al.
Publicado: (2020)