Cargando…
Parametric study and process modeling for metronidazole removal by rhombic dodecahedron ZIF-67 crystals
Metronidazole (MNZ) is an extensively used antibiotic against bacterial infections for humans and farm animals. Prevention of antibiotics discharge is essential to prevent adverse environmental and health impacts. A member of metal–organic frameworks, zeolite imidazole framework-67 with cobalt sulfa...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10480145/ https://www.ncbi.nlm.nih.gov/pubmed/37669982 http://dx.doi.org/10.1038/s41598-023-41724-y |
Sumario: | Metronidazole (MNZ) is an extensively used antibiotic against bacterial infections for humans and farm animals. Prevention of antibiotics discharge is essential to prevent adverse environmental and health impacts. A member of metal–organic frameworks, zeolite imidazole framework-67 with cobalt sulfate precursor (ZIF-67-SO(4)) and exceptional physio-chemical properties was prepared via room temperature precipitation to adsorb MNZ. The study framework was designed by Box–Behnken Design to evaluate the effect of pH, ZIF-67-SO(4) dose, and contact time on adsorption efficiency. The polynomial model fitted the adsorption system indicated the optimal condition for 97% MNZ removal occurs at pH = 7, adsorbent dosage = 1 g/L, and mixing time = 60 min. The model also revealed that the removal increased with contact time and decreased at strong pH. Equilibrium and kinetic study also indicated the adsorption of MNZ followed the intra-particle diffusion model and the Langmuir isotherm model with a qmax = 63.03 mg/g. The insignificant loss in removal efficacy in use-reuse adsorption cycles reflected the practical viability of ZIF-67-SO(4). |
---|