Cargando…
Laser spectroscopic method for remote sensing of respiratory rate
Noncontact sensing methods for measuring vital signs have recently gained interest, particularly for long-term monitoring. This study introduces a new method for measuring respiratory rate remotely. The proposed method is based on the reflection of a laser beam off a striped card attached to a movin...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10480269/ https://www.ncbi.nlm.nih.gov/pubmed/37358781 http://dx.doi.org/10.1007/s13246-023-01292-x |
Sumario: | Noncontact sensing methods for measuring vital signs have recently gained interest, particularly for long-term monitoring. This study introduces a new method for measuring respiratory rate remotely. The proposed method is based on the reflection of a laser beam off a striped card attached to a moving platform simulating chest wall displacements. A wide range of frequencies (n = 35) from 0.06 to 2.2 Hz corresponding to both normal and pathological human respiratory rates were simulated using a moving mechanical platform. Reflected spectra (n = 105) were collected by a spectrometer in a dynamic mode. Fourier analysis was performed to retrieve the breathing frequency. The results show a striking agreement between measurements and reference frequencies. The results also show that low frequencies corresponding to respiratory rates can be detected with high accuracy (uncertainty is well below 5%). A validation test of the measuring method on a human subject demonstrated a great potential for remote respiration rate monitoring of adults and neonates in a clinical environment. |
---|