Cargando…
ScatterNet for projection-based 4D cone-beam computed tomography intensity correction of lung cancer patients
Background and purpose: In radiotherapy, dose calculations based on 4D cone beam CTs (4DCBCTs) require image intensity corrections. This retrospective study compared the dose calculation accuracy of a deep learning, projection-based scatter correction workflow (ScatterNet), to slower workflows: conv...
Autores principales: | Schmitz, Henning, Thummerer, Adrian, Kawula, Maria, Lombardo, Elia, Parodi, Katia, Belka, Claus, Kamp, Florian, Kurz, Christopher, Landry, Guillaume |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10480315/ https://www.ncbi.nlm.nih.gov/pubmed/37680905 http://dx.doi.org/10.1016/j.phro.2023.100482 |
Ejemplares similares
-
Feasibility of automated proton therapy plan adaptation for head and neck tumors using cone beam CT images
por: Kurz, Christopher, et al.
Publicado: (2016) -
Dosimetric impact of deep learning-based CT auto-segmentation on radiation therapy treatment planning for prostate cancer
por: Kawula, Maria, et al.
Publicado: (2022) -
Evaluation of an anthropomorphic ion chamber and 3D gel dosimetry head phantom at a 0.35 T MR-linac using separate 1.5 T MR-scanners for gel readout
por: Nierer, Lukas, et al.
Publicado: (2022) -
Assessment of intrafractional prostate motion and its dosimetric impact in MRI-guided online adaptive radiotherapy with gating
por: Xiong, Yuqing, et al.
Publicado: (2022) -
Prior knowledge based deep learning auto-segmentation in magnetic resonance imaging-guided radiotherapy of prostate cancer
por: Kawula, Maria, et al.
Publicado: (2023)