Cargando…

Large-scale assembly of isotropic nanofiber aerogels based on columnar-equiaxed crystal transition

Ice-templating technology holds great potential to construct industrial porous materials from nanometers to the macroscopic scale for tailoring thermal, electronic, or acoustic transport. Herein, we describe a general ice-templating technology through freezing the material on a rotating cryogenic dr...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Lei, Zhou, Yiqian, Gao, Yang, Feng, Xuning, Zhang, Fangshu, Li, Weiwei, Zhu, Bin, Tian, Ze, Fan, Peixun, Zhong, Minlin, Niu, Huichang, Zhao, Shanyu, Wei, Xiaoding, Zhu, Jia, Wu, Hui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10480443/
https://www.ncbi.nlm.nih.gov/pubmed/37670012
http://dx.doi.org/10.1038/s41467-023-41087-y
_version_ 1785101787356725248
author Li, Lei
Zhou, Yiqian
Gao, Yang
Feng, Xuning
Zhang, Fangshu
Li, Weiwei
Zhu, Bin
Tian, Ze
Fan, Peixun
Zhong, Minlin
Niu, Huichang
Zhao, Shanyu
Wei, Xiaoding
Zhu, Jia
Wu, Hui
author_facet Li, Lei
Zhou, Yiqian
Gao, Yang
Feng, Xuning
Zhang, Fangshu
Li, Weiwei
Zhu, Bin
Tian, Ze
Fan, Peixun
Zhong, Minlin
Niu, Huichang
Zhao, Shanyu
Wei, Xiaoding
Zhu, Jia
Wu, Hui
author_sort Li, Lei
collection PubMed
description Ice-templating technology holds great potential to construct industrial porous materials from nanometers to the macroscopic scale for tailoring thermal, electronic, or acoustic transport. Herein, we describe a general ice-templating technology through freezing the material on a rotating cryogenic drum surface, crushing it, and then re-casting the nanofiber slurry. Through decoupling the ice nucleation and growth processes, we achieved the columnar-equiaxed crystal transition in the freezing procedure. The highly random stacking and integrating of equiaxed ice crystals can organize nanofibers into thousands of repeating microscale units with a tortuous channel topology. Owing to the spatially well-defined isotropic structure, the obtained Al(2)O(3)·SiO(2) nanofiber aerogels exhibit ultralow thermal conductivity, superelasticity, good damage tolerance, and fatigue resistance. These features, together with their natural stability up to 1200 °C, make them highly robust for thermal insulation under extreme thermomechanical environments. Cascading thermal runaway propagation in a high-capacity lithium-ion battery module consisting of LiNi(0.8)Co(0.1)Mn(0.1)O(2) cathode, with ultrahigh thermal shock power of 215 kW, can be completely prevented by a thin nanofiber aerogel layer. These findings not only establish a general production route for nanomaterial assemblies that is conventionally challenging, but also demonstrate a high-energy-density battery module configuration with a high safety standard that is critical for practical applications.
format Online
Article
Text
id pubmed-10480443
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-104804432023-09-07 Large-scale assembly of isotropic nanofiber aerogels based on columnar-equiaxed crystal transition Li, Lei Zhou, Yiqian Gao, Yang Feng, Xuning Zhang, Fangshu Li, Weiwei Zhu, Bin Tian, Ze Fan, Peixun Zhong, Minlin Niu, Huichang Zhao, Shanyu Wei, Xiaoding Zhu, Jia Wu, Hui Nat Commun Article Ice-templating technology holds great potential to construct industrial porous materials from nanometers to the macroscopic scale for tailoring thermal, electronic, or acoustic transport. Herein, we describe a general ice-templating technology through freezing the material on a rotating cryogenic drum surface, crushing it, and then re-casting the nanofiber slurry. Through decoupling the ice nucleation and growth processes, we achieved the columnar-equiaxed crystal transition in the freezing procedure. The highly random stacking and integrating of equiaxed ice crystals can organize nanofibers into thousands of repeating microscale units with a tortuous channel topology. Owing to the spatially well-defined isotropic structure, the obtained Al(2)O(3)·SiO(2) nanofiber aerogels exhibit ultralow thermal conductivity, superelasticity, good damage tolerance, and fatigue resistance. These features, together with their natural stability up to 1200 °C, make them highly robust for thermal insulation under extreme thermomechanical environments. Cascading thermal runaway propagation in a high-capacity lithium-ion battery module consisting of LiNi(0.8)Co(0.1)Mn(0.1)O(2) cathode, with ultrahigh thermal shock power of 215 kW, can be completely prevented by a thin nanofiber aerogel layer. These findings not only establish a general production route for nanomaterial assemblies that is conventionally challenging, but also demonstrate a high-energy-density battery module configuration with a high safety standard that is critical for practical applications. Nature Publishing Group UK 2023-09-05 /pmc/articles/PMC10480443/ /pubmed/37670012 http://dx.doi.org/10.1038/s41467-023-41087-y Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Li, Lei
Zhou, Yiqian
Gao, Yang
Feng, Xuning
Zhang, Fangshu
Li, Weiwei
Zhu, Bin
Tian, Ze
Fan, Peixun
Zhong, Minlin
Niu, Huichang
Zhao, Shanyu
Wei, Xiaoding
Zhu, Jia
Wu, Hui
Large-scale assembly of isotropic nanofiber aerogels based on columnar-equiaxed crystal transition
title Large-scale assembly of isotropic nanofiber aerogels based on columnar-equiaxed crystal transition
title_full Large-scale assembly of isotropic nanofiber aerogels based on columnar-equiaxed crystal transition
title_fullStr Large-scale assembly of isotropic nanofiber aerogels based on columnar-equiaxed crystal transition
title_full_unstemmed Large-scale assembly of isotropic nanofiber aerogels based on columnar-equiaxed crystal transition
title_short Large-scale assembly of isotropic nanofiber aerogels based on columnar-equiaxed crystal transition
title_sort large-scale assembly of isotropic nanofiber aerogels based on columnar-equiaxed crystal transition
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10480443/
https://www.ncbi.nlm.nih.gov/pubmed/37670012
http://dx.doi.org/10.1038/s41467-023-41087-y
work_keys_str_mv AT lilei largescaleassemblyofisotropicnanofiberaerogelsbasedoncolumnarequiaxedcrystaltransition
AT zhouyiqian largescaleassemblyofisotropicnanofiberaerogelsbasedoncolumnarequiaxedcrystaltransition
AT gaoyang largescaleassemblyofisotropicnanofiberaerogelsbasedoncolumnarequiaxedcrystaltransition
AT fengxuning largescaleassemblyofisotropicnanofiberaerogelsbasedoncolumnarequiaxedcrystaltransition
AT zhangfangshu largescaleassemblyofisotropicnanofiberaerogelsbasedoncolumnarequiaxedcrystaltransition
AT liweiwei largescaleassemblyofisotropicnanofiberaerogelsbasedoncolumnarequiaxedcrystaltransition
AT zhubin largescaleassemblyofisotropicnanofiberaerogelsbasedoncolumnarequiaxedcrystaltransition
AT tianze largescaleassemblyofisotropicnanofiberaerogelsbasedoncolumnarequiaxedcrystaltransition
AT fanpeixun largescaleassemblyofisotropicnanofiberaerogelsbasedoncolumnarequiaxedcrystaltransition
AT zhongminlin largescaleassemblyofisotropicnanofiberaerogelsbasedoncolumnarequiaxedcrystaltransition
AT niuhuichang largescaleassemblyofisotropicnanofiberaerogelsbasedoncolumnarequiaxedcrystaltransition
AT zhaoshanyu largescaleassemblyofisotropicnanofiberaerogelsbasedoncolumnarequiaxedcrystaltransition
AT weixiaoding largescaleassemblyofisotropicnanofiberaerogelsbasedoncolumnarequiaxedcrystaltransition
AT zhujia largescaleassemblyofisotropicnanofiberaerogelsbasedoncolumnarequiaxedcrystaltransition
AT wuhui largescaleassemblyofisotropicnanofiberaerogelsbasedoncolumnarequiaxedcrystaltransition