Cargando…
Large-scale assembly of isotropic nanofiber aerogels based on columnar-equiaxed crystal transition
Ice-templating technology holds great potential to construct industrial porous materials from nanometers to the macroscopic scale for tailoring thermal, electronic, or acoustic transport. Herein, we describe a general ice-templating technology through freezing the material on a rotating cryogenic dr...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10480443/ https://www.ncbi.nlm.nih.gov/pubmed/37670012 http://dx.doi.org/10.1038/s41467-023-41087-y |
_version_ | 1785101787356725248 |
---|---|
author | Li, Lei Zhou, Yiqian Gao, Yang Feng, Xuning Zhang, Fangshu Li, Weiwei Zhu, Bin Tian, Ze Fan, Peixun Zhong, Minlin Niu, Huichang Zhao, Shanyu Wei, Xiaoding Zhu, Jia Wu, Hui |
author_facet | Li, Lei Zhou, Yiqian Gao, Yang Feng, Xuning Zhang, Fangshu Li, Weiwei Zhu, Bin Tian, Ze Fan, Peixun Zhong, Minlin Niu, Huichang Zhao, Shanyu Wei, Xiaoding Zhu, Jia Wu, Hui |
author_sort | Li, Lei |
collection | PubMed |
description | Ice-templating technology holds great potential to construct industrial porous materials from nanometers to the macroscopic scale for tailoring thermal, electronic, or acoustic transport. Herein, we describe a general ice-templating technology through freezing the material on a rotating cryogenic drum surface, crushing it, and then re-casting the nanofiber slurry. Through decoupling the ice nucleation and growth processes, we achieved the columnar-equiaxed crystal transition in the freezing procedure. The highly random stacking and integrating of equiaxed ice crystals can organize nanofibers into thousands of repeating microscale units with a tortuous channel topology. Owing to the spatially well-defined isotropic structure, the obtained Al(2)O(3)·SiO(2) nanofiber aerogels exhibit ultralow thermal conductivity, superelasticity, good damage tolerance, and fatigue resistance. These features, together with their natural stability up to 1200 °C, make them highly robust for thermal insulation under extreme thermomechanical environments. Cascading thermal runaway propagation in a high-capacity lithium-ion battery module consisting of LiNi(0.8)Co(0.1)Mn(0.1)O(2) cathode, with ultrahigh thermal shock power of 215 kW, can be completely prevented by a thin nanofiber aerogel layer. These findings not only establish a general production route for nanomaterial assemblies that is conventionally challenging, but also demonstrate a high-energy-density battery module configuration with a high safety standard that is critical for practical applications. |
format | Online Article Text |
id | pubmed-10480443 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-104804432023-09-07 Large-scale assembly of isotropic nanofiber aerogels based on columnar-equiaxed crystal transition Li, Lei Zhou, Yiqian Gao, Yang Feng, Xuning Zhang, Fangshu Li, Weiwei Zhu, Bin Tian, Ze Fan, Peixun Zhong, Minlin Niu, Huichang Zhao, Shanyu Wei, Xiaoding Zhu, Jia Wu, Hui Nat Commun Article Ice-templating technology holds great potential to construct industrial porous materials from nanometers to the macroscopic scale for tailoring thermal, electronic, or acoustic transport. Herein, we describe a general ice-templating technology through freezing the material on a rotating cryogenic drum surface, crushing it, and then re-casting the nanofiber slurry. Through decoupling the ice nucleation and growth processes, we achieved the columnar-equiaxed crystal transition in the freezing procedure. The highly random stacking and integrating of equiaxed ice crystals can organize nanofibers into thousands of repeating microscale units with a tortuous channel topology. Owing to the spatially well-defined isotropic structure, the obtained Al(2)O(3)·SiO(2) nanofiber aerogels exhibit ultralow thermal conductivity, superelasticity, good damage tolerance, and fatigue resistance. These features, together with their natural stability up to 1200 °C, make them highly robust for thermal insulation under extreme thermomechanical environments. Cascading thermal runaway propagation in a high-capacity lithium-ion battery module consisting of LiNi(0.8)Co(0.1)Mn(0.1)O(2) cathode, with ultrahigh thermal shock power of 215 kW, can be completely prevented by a thin nanofiber aerogel layer. These findings not only establish a general production route for nanomaterial assemblies that is conventionally challenging, but also demonstrate a high-energy-density battery module configuration with a high safety standard that is critical for practical applications. Nature Publishing Group UK 2023-09-05 /pmc/articles/PMC10480443/ /pubmed/37670012 http://dx.doi.org/10.1038/s41467-023-41087-y Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Li, Lei Zhou, Yiqian Gao, Yang Feng, Xuning Zhang, Fangshu Li, Weiwei Zhu, Bin Tian, Ze Fan, Peixun Zhong, Minlin Niu, Huichang Zhao, Shanyu Wei, Xiaoding Zhu, Jia Wu, Hui Large-scale assembly of isotropic nanofiber aerogels based on columnar-equiaxed crystal transition |
title | Large-scale assembly of isotropic nanofiber aerogels based on columnar-equiaxed crystal transition |
title_full | Large-scale assembly of isotropic nanofiber aerogels based on columnar-equiaxed crystal transition |
title_fullStr | Large-scale assembly of isotropic nanofiber aerogels based on columnar-equiaxed crystal transition |
title_full_unstemmed | Large-scale assembly of isotropic nanofiber aerogels based on columnar-equiaxed crystal transition |
title_short | Large-scale assembly of isotropic nanofiber aerogels based on columnar-equiaxed crystal transition |
title_sort | large-scale assembly of isotropic nanofiber aerogels based on columnar-equiaxed crystal transition |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10480443/ https://www.ncbi.nlm.nih.gov/pubmed/37670012 http://dx.doi.org/10.1038/s41467-023-41087-y |
work_keys_str_mv | AT lilei largescaleassemblyofisotropicnanofiberaerogelsbasedoncolumnarequiaxedcrystaltransition AT zhouyiqian largescaleassemblyofisotropicnanofiberaerogelsbasedoncolumnarequiaxedcrystaltransition AT gaoyang largescaleassemblyofisotropicnanofiberaerogelsbasedoncolumnarequiaxedcrystaltransition AT fengxuning largescaleassemblyofisotropicnanofiberaerogelsbasedoncolumnarequiaxedcrystaltransition AT zhangfangshu largescaleassemblyofisotropicnanofiberaerogelsbasedoncolumnarequiaxedcrystaltransition AT liweiwei largescaleassemblyofisotropicnanofiberaerogelsbasedoncolumnarequiaxedcrystaltransition AT zhubin largescaleassemblyofisotropicnanofiberaerogelsbasedoncolumnarequiaxedcrystaltransition AT tianze largescaleassemblyofisotropicnanofiberaerogelsbasedoncolumnarequiaxedcrystaltransition AT fanpeixun largescaleassemblyofisotropicnanofiberaerogelsbasedoncolumnarequiaxedcrystaltransition AT zhongminlin largescaleassemblyofisotropicnanofiberaerogelsbasedoncolumnarequiaxedcrystaltransition AT niuhuichang largescaleassemblyofisotropicnanofiberaerogelsbasedoncolumnarequiaxedcrystaltransition AT zhaoshanyu largescaleassemblyofisotropicnanofiberaerogelsbasedoncolumnarequiaxedcrystaltransition AT weixiaoding largescaleassemblyofisotropicnanofiberaerogelsbasedoncolumnarequiaxedcrystaltransition AT zhujia largescaleassemblyofisotropicnanofiberaerogelsbasedoncolumnarequiaxedcrystaltransition AT wuhui largescaleassemblyofisotropicnanofiberaerogelsbasedoncolumnarequiaxedcrystaltransition |