Cargando…
How far MS lesion detection and segmentation are integrated into the clinical workflow? A systematic review
Introduction: Over the past few years, the deep learning community has developed and validated a plethora of tools for lesion detection and segmentation in Multiple Sclerosis (MS). However, there is an important gap between validating models technically and clinically. To this end, a six-step framew...
Autores principales: | Spagnolo, Federico, Depeursinge, Adrien, Schädelin, Sabine, Akbulut, Aysenur, Müller, Henning, Barakovic, Muhamed, Melie-Garcia, Lester, Bach Cuadra, Meritxell, Granziera, Cristina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10480555/ https://www.ncbi.nlm.nih.gov/pubmed/37659189 http://dx.doi.org/10.1016/j.nicl.2023.103491 |
Ejemplares similares
-
Personalized maps of T1 relaxometry abnormalities provide correlates of disability in multiple sclerosis patients
por: Chen, Xinjie, et al.
Publicado: (2023) -
A comparative assessment of myelin-sensitive measures in multiple sclerosis patients and healthy subjects
por: Rahmanzadeh, Reza, et al.
Publicado: (2022) -
Multiple sclerosis cortical and WM lesion segmentation at 3T MRI: a deep learning method based on FLAIR and MP2RAGE
por: La Rosa, Francesco, et al.
Publicado: (2020) -
GAMER-MRI in Multiple Sclerosis Identifies the Diffusion-Based Microstructural Measures That Are Most Sensitive to Focal Damage: A Deep-Learning-Based Analysis and Clinico-Biological Validation
por: Lu, Po-Jui, et al.
Publicado: (2021) -
Longitudinal analysis of white matter and cortical lesions in multiple sclerosis
por: Fartaria, Mário João, et al.
Publicado: (2019)