Cargando…

Spatial lipidomics reveals biased phospholipid remodeling in acute Pseudomonas lung infection

Pseudomonas aeruginosa (Pa) is a pathogen causing chronic pulmonary infections in patients with cystic fibrosis (CF). Manipulation of lipids is an important feature of Pa infection and on a tissue-level scale is poorly understood. Using a mouse model of acute Pa pulmonary infection, we explored the...

Descripción completa

Detalles Bibliográficos
Autores principales: Scott, Alison J., Ellis, Shane R., Hofstaedter, Casey E., Heeren, Ron M.A., Ernst, Robert K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10480615/
https://www.ncbi.nlm.nih.gov/pubmed/37680478
http://dx.doi.org/10.1016/j.isci.2023.107700
Descripción
Sumario:Pseudomonas aeruginosa (Pa) is a pathogen causing chronic pulmonary infections in patients with cystic fibrosis (CF). Manipulation of lipids is an important feature of Pa infection and on a tissue-level scale is poorly understood. Using a mouse model of acute Pa pulmonary infection, we explored the whole-lung phospholipid response using mass spectrometry imaging (MSI) and spatial lipidomics. Using a histology-driven analysis, we isolated airways and parenchyma from both mock- and Pa-infected lungs and used systems biology tools to identify enriched metabolic pathways from the differential phospholipid identities. Infection was associated with a set of 26 ions, with 11 unique to parenchyma and 6 unique to airways. Acyl remodeling was differentially enriched in infected parenchyma as the predominant biological function. These functions correlated with markers of polymorphonuclear (PMN) cell influx, a defining feature of the lung response to Pa infection, implicating enzymes active in phospholipid remodeling.