Cargando…
Machine learning approaches reveal highly heterogeneous air quality co-benefits of the energy transition
Estimating health benefits of reducing fossil fuel use from improved air quality provides important rationales for carbon emissions abatement. Simulating pollution concentration is a crucial step of the estimation, but traditional approaches often rely on complicated chemical transport models that r...
Autores principales: | Zhang, Da, Wang, Qingyi, Song, Shaojie, Chen, Simiao, Li, Mingwei, Shen, Lu, Zheng, Siqi, Cai, Bofeng, Wang, Shenhao, Zheng, Haotian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10480617/ https://www.ncbi.nlm.nih.gov/pubmed/37680462 http://dx.doi.org/10.1016/j.isci.2023.107652 |
Ejemplares similares
-
Clean energy transitions and health
por: Li, Meng, et al.
Publicado: (2023) -
Machine learning analysis on the impacts of COVID-19 on India’s renewable energy transitions and air quality
por: Stephan, Thompson, et al.
Publicado: (2022) -
Costs and health benefits of the rural energy transition to carbon neutrality in China
por: Ma, Teng, et al.
Publicado: (2023) -
Transjugular intrahepatic portosystemic shunt plus embolization for bleeding esophagojejunal varices after total gastrectomy
por: Wu, Shaojie, et al.
Publicado: (2019) -
Transition Towards Energy Efficient Machine Tools
por: Zein, André
Publicado: (2012)